• Title/Summary/Keyword: Seasonal adjustment

Search Result 52, Processing Time 0.027 seconds

Forecasting Day-ahead Electricity Price Using a Hybrid Improved Approach

  • Hu, Jian-Ming;Wang, Jian-Zhou
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2166-2176
    • /
    • 2017
  • Electricity price prediction plays a crucial part in making the schedule and managing the risk to the competitive electricity market participants. However, it is a difficult and challenging task owing to the characteristics of the nonlinearity, non-stationarity and uncertainty of the price series. This study proposes a hybrid improved strategy which incorporates data preprocessor components and a forecasting engine component to enhance the forecasting accuracy of the electricity price. In the developed forecasting procedure, the Seasonal Adjustment (SA) method and the Ensemble Empirical Mode Decomposition (EEMD) technique are synthesized as the data preprocessing component; the Coupled Simulated Annealing (CSA) optimization method and the Least Square Support Vector Regression (LSSVR) algorithm construct the prediction engine. The proposed hybrid approach is verified with electricity price data sampled from the power market of New South Wales in Australia. The simulation outcome manifests that the proposed hybrid approach obtains the observable improvement in the forecasting accuracy compared with other approaches, which suggests that the proposed combinational approach occupies preferable predication ability and enough precision.

Policy evaluation of the rice market isolation system and production adjustment system

  • Dae Young Kwak;Sukho Han
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.629-643
    • /
    • 2023
  • The purpose of this study was to examine the effectiveness and efficiency of a policy by comparing and analyzing the impact of the rice market isolation system and production adjustment system (strategic crops direct payment system that induces the cultivation of other crops instead of rice) on rice supply, rice price, and government's financial expenditure. To achieve this purpose, a rice supply and demand forecasting and policy simulation model was developed in this study using a partial equilibrium model limited to a single item (rice), a dynamic equation model system, and a structural equation system that reflects the casual relationship between variables with economic theory. The rice policy analysis model used a recursive model and not a simultaneous equation model. The policy is distinct from that of previous studies, in which changes in government's policy affected the price of rice during harvest and the lean season before the next harvest, and price changes affected the supply and demand of rice according to the modeling, that is, a more specific policy effect analysis. The analysis showed that the market isolation system increased government's financial expenditure compared to the production adjustment system, suggesting low policy financial efficiency, low policy effectiveness on target, and increased harvest price. In particular, the market isolation system temporarily increased the price during harvest season but decreased the price during the lean season due to an increase in ending stock caused by increased production and government stock. Therefore, a decrease in price during the lean season may decrease annual farm-gate prices, and the reverse seasonal amplitude is expected to intensify.

Long-Period Sea Level Variations around Korea, Japan, and Russia (우리나라 근해의 장기적인 해수면변화)

  • PANG Ig-Chan;OH Im-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.733-753
    • /
    • 1994
  • Monthly mean sea levels from 103 tidal stations in Korea, Japan, and Russia are analyzed to study long-period sea level variations. Barometric adjustment are done for all the sea level data, using monthly air pressures at sea levels from meteorological stations near tidal stations. Seasonal variation is dominant in most of study area. It is the largest in the coasts along the Tsushima Current, and the smallest in the Russian coasts. The cross-correlations of seasonal variations are very high between the coasts along the Tsushima Current. In these marginal seas, seasonal variations seem to be related with the Tsushima Current. The phase of seasonal variations is generally getting late from south to north, and also from west to east. On the other hand, longer-period variations(longer than seasonal variation) have the largest amplitudes and the earliest phases in the coasts along the Pacific Ocean, which shows that they propagate from the Pacific Ocean. Shorter-period variations (shorter than seasonal variation) have generally lower cross correlations. Their values do not show any dictinct difference between areas, and show a common tendency that they are inversely proportional to distance. It implies that the shorter period waves are generated all over the study areas, and propagate in all the directions with faster dissipations. The trends of sea levels in the study area are generally negative in the coasts along the Pacific Ocean and positive in the other areas during the period of 1965 to 1985. By the trends, the mean volume transport between Cheju and Sasebo can be reduced by about 1 Sv during the period. The seasonal variation of volume transport obtained by sea level difference is about 2 Sv in the Korea Strait. The values are comparable to previous reports.

  • PDF

A study on the improvement of process operation through the adjustment to the flow rate of LNG HP pump (LNG 고압펌프 운전유량 조절에 따른 공정운영 개선방안 연구)

  • Kim D. H.;Lee J. H.;Kim H, Y.;Baek Y. S.
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.15-22
    • /
    • 2004
  • This study has been carried out to improve the conditions of process operation through the adjustment to the flow rate and outlet pressure of LNG HP pump, one of the main process facilities, in LNG receiving terminal. We have determined optimum flow rate and applied it to the field operation by analyzing the field operating performance for all the HP pumps and the load of natural gas supply in seasonal using the ASPEN PLUS. As a results, we have get the electric cost saving for the HP pump operation and derived contribution to safety operation by reduced the LNG Process pressure.

  • PDF

Climate Change-Induced Physical Risks' Impact on Korean Commercial Banks and Property Insurance Companies in the Long Run (기후변화의 위험이 시중은행과 손해보험에 장기적으로 미치는 영향)

  • Seiwan Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.107-121
    • /
    • 2024
  • In this study, we empirically analyzed the impact of physical risks due to climate change on the soundness and operational performance of the financial industry by combining economics and climatology. Particularly, unlike previous studies, we employed the Seasonal-Trend decomposition using LOESS (STL) method to extract trends of climate-related risk variables and economic-financial variables, conducting a two-stage empirical analysis. In the first stage estimation, we found that the delinquency rate and the Bank for International Settlement (BIS) ratio of commercial banks have significant negative effects on the damage caused by natural disasters, frequency of heavy rainfall, average temperature, and number of typhoons. On the other hand, for insurance companies, the damage from natural disasters, frequency of heavy rainfall, frequency of heavy snowfall, and annual average temperature have significant negative effects on return on assets (ROA) and the risk-based capital ratio (RBC). In the second stage estimation, based on the first stage results, we predicted the soundness and operational performance indicators of commercial banks and insurance companies until 2035. According to the forecast results, the delinquency rate of commercial banks is expected to increase steadily until 2035 under assumption that recent years' trend continues until 2035. It indicates that banks' managerial risk can be seriously worsened from climate change. Also the BIS ratio is expected to decrease which also indicates weakening safety buffer against climate risks over time. Additionally, the ROA of insurance companies is expected to decrease, followed by an increase in the RBC, and then a subsequent decrease.

A Study on Demand Pattern Analysis for Forecasting of Customer's Electricity Demand (수요측 전력사용량 예측을 위한 수요패턴 분석 연구)

  • Ko, Jong-Min;Yang, Il-Kwon;Yu, In-Hyeob
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1342-1348
    • /
    • 2008
  • One important objective of the electricity market is to decrease the price by ensuring stability in the market operation. Interconnected to this is another objective; namely, to realize sustainable consumption of electricity by equitably distributing the effects and benefits of participating in the market among all participants of the industry. One method that can help achieve these objectives is the ^{(R)}$demand-response program, - which allows for active adjustment of the loadage from the demand side in response to the price. The demand-response program requires a customer baseline load (CBL), a criterion of calculating the success of decreases in demand. This study was conducted in order to calculate undistorted CBL by analyzing the correlations between such external or seasonal factors as temperature, humidity, and discomfort indices and the amounts of electricity consumed. The method and findings of this study are accordingly explicated.

Optimal Operation Schedule of Semi-Fixed PV System and Its Effect on PV Power Generation Efficiency (반고정식 PV 시스템의 운영 스케줄 도출 및 그에 따른 발전 효율 변화 고찰)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.69-77
    • /
    • 2017
  • The amount of solar irradiation obtained by a photovoltaic (PV) solar panel is the major factor determining the power generated by a PV system, and the array tilt angle is critical for maximizing panel radiation acquisition. There are three types of PV systems based on the manner of setting the array tilt angle: fixed, semi-fixed, and tracking systems. A fixed system cannot respond to seasonal solar altitude angle changes, and therefore cannot absorb the maximum available solar radiation. The tracking system continually adjusts the tilt angle to absorb the maximum available radiation, but requires additional cost for equipment, installation, operation, and maintenance. The semi-fixed system is only adjusted periodically (usually seasonally) to obtain more energy than a fixed system at an overall cost that is less than a tracking system. To maximize semi-fixed system efficiency, determining the optimal tilt angle adjustment schedule are required. In this research, we conducted a simulation to derive an optimal operation schedule for a semi-fixed system in Seoul, Korea (latitude $37.5^{\circ}$). We implemented a solar radiation acquisition model and PV genereation model on MATLAB. The optimal operation schedule was derived by changing the number of tilt angle adjustments throughout a year using a Dynamic Algorithm. The results show that adjusting the tilt angle 4 times a year was the most appropriate. and then, generation amount of PV system increased 2.80% compared with the fixed system. This corresponds to 99% compared to daily adjustment model. This increase would be quite valid as the PV system installation area increased.

Some Important Summer Oceanogaphic Phenomena in the East China Sea (夏季 東支那海의 重要한 海洋學的 現象들)

  • 박영형
    • 한국해양학회지
    • /
    • v.20 no.1
    • /
    • pp.12-21
    • /
    • 1985
  • In this paper, the most important oceangraphic phenomena of the summer season in the East China Sea are reviewed. The hydrographic conditions in the suface layer above the seasonal thermocline are under great influence from solar heating, fresh water runoff mainly from the Yangtze River, and summer wind fields. In the lower layer below the thermocline, several distinct water masses e.g. the Kuroshio surface water, the Western North Pacific Central Water and the Yellow Sea Bottom Cold Water are intruded in response to the adjustment of the field of mass to the various dynamical processes. The frontal mixing between the intruded Yellow Sea Bottom Cold. Water and the Western North Pacific Central Water takes place in the bottom layer over the continental shelf south off Cheju Is. This mixed water probably has mush influence on the water properties of the intermediate and bottom layer around Cheju Is. and the south coast of Korea.

  • PDF

Optimize rainfall prediction utilize multivariate time series, seasonal adjustment and Stacked Long short term memory

  • Nguyen, Thi Huong;Kwon, Yoon Jeong;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.373-373
    • /
    • 2021
  • Rainfall forecasting is an important issue that is applied in many areas, such as agriculture, flood warning, and water resources management. In this context, this study proposed a statistical and machine learning-based forecasting model for monthly rainfall. The Bayesian Gaussian process was chosen to optimize the hyperparameters of the Stacked Long Short-term memory (SLSTM) model. The proposed SLSTM model was applied for predicting monthly precipitation of Seoul station, South Korea. Data were retrieved from the Korea Meteorological Administration (KMA) in the period between 1960 and 2019. Four schemes were examined in this study: (i) prediction with only rainfall; (ii) with deseasonalized rainfall; (iii) with rainfall and minimum temperature; (iv) with deseasonalized rainfall and minimum temperature. The error of predicted rainfall based on the root mean squared error (RMSE), 16-17 mm, is relatively small compared with the average monthly rainfall at Seoul station is 117mm. The results showed scheme (iv) gives the best prediction result. Therefore, this approach is more straightforward than the hydrological and hydraulic models, which request much more input data. The result indicated that a deep learning network could be applied successfully in the hydrology field. Overall, the proposed method is promising, given a good solution for rainfall prediction.

  • PDF