• 제목/요약/키워드: Search Term Frequency Data

검색결과 22건 처리시간 0.018초

A Study on Change in Perception of Community Service and Demand Prediction based on Big Data

  • Chun-Ok, Jang
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.230-237
    • /
    • 2022
  • The Community Social Service Investment project started as a state subsidy project in 2007 and has grown very rapidly in quantitative terms in a short period of time. It is a bottom-up project that discovers the welfare needs of people and plans and provides services suitable for them. The purpose of this study is to analyze using big data to determine the social response to local community service investment projects. For this, data was collected and analyzed by crawling with a specific keyword of community service investment project on Google and Naver sites. As for the analysis contents, monthly search volume, related keywords, monthly search volume, search rate by age, and gender search rate were conducted. As a result, 10 items were found as related keywords in Google, and 3 items were found in Naver. The overall results of Google and Naver sites were slightly different, but they increased and decreased at almost the same time. Therefore, it can be seen that the community service investment project continues to attract users' interest.

검색어 빈도 데이터를 반영한 코로나 19 확진자수 예측 딥러닝 모델 (Predicting the Number of Confirmed COVID-19 Cases Using Deep Learning Models with Search Term Frequency Data)

  • 정성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.387-398
    • /
    • 2023
  • 코로나 19 유행은 인류 생활 방식과 패턴에 큰 영향을 주었다. 코로나 19는 침 방울(비말)은 물론 공기를 통해서도 감염되기 때문에 가능한 대면 접촉을 피하고 많은 사람이 가까이 모이는 장소는 피할 것을 권고하고 있다. 코로나 19 환자와 접촉했거나 코로나 19 환자가 발생한 장소에 있었던 사람이 코로나 19에 감염되었을 것을 염려한다면 구글에서 코로나 19 증상을 찾아볼 것이라고 충분히 예상해 볼 수 있다. 본 연구에서는 과거 독감 감시와 관리에 중요 역할을 했었던 구글 트렌드(Google Trends)를 다시 소환하고 코로나 19 확진자수 데이터와 결합하여 미래의 코로나 19 확진자수를 예측할 수 있을지 딥러닝 모델(DNN & LSTM)을 사용한 탐색적 데이터 분석을 실시하였다. 특히 이 연구에 사용된 검색어 빈도 데이터는 공개적으로 사용할 수 있으며 사생활 침해의 우려도 없다. 심층 신경망 모델(DNN model)이 적용되었을 때 한국에서 가장 많은 인구가 사는 서울(960만 명)과 두 번째로 인구가 많은 부산(340만 명)에서는 검색어 빈도 데이터를 포함하여 예측했을 때 더 낮은 오류율을 기록했다. 이와 같은 분석 결과는 검색어 빈도 데이터가 일정 규모 이상의 인구수를 가진 도시에서 중요한 역할을 할 수 있다는 것을 보여주는 것이다. 우리는 이와 같은 예측이 더 강력한 예방 조치의 실행이나 해제 같은 정책을 결정하는데 근거 자료로 충분히 사용될 수 있을 것으로 믿는다.

Does the general public have concerns with dental anesthetics?

  • Razon, Jonathan;Mascarenhas, Ana Karina
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제21권2호
    • /
    • pp.113-118
    • /
    • 2021
  • Background: Consumers and patients in the last two decades have increasingly turned to various internet search engines including Google for information. Google Trends records searches done using the Google search engine. Google Trends is free and provides data on search terms and related queries. One recent study found a large public interest in "dental anesthesia". In this paper, we further explore this interest in "dental anesthesia" and assess if any patterns emerge. Methods: In this study, Google Trends and the search term "dental pain" was used to record the consumer's interest over a five-year period. Additionally, using the search term "Dental anesthesia," a top ten related query list was generated. Queries are grouped into two sections, a "top" category and a "rising" category. We then added additional search term such as: wisdom tooth anesthesia, wisdom tooth general anesthesia, dental anesthetics, local anesthetic, dental numbing, anesthesia dentist, and dental pain. From the related queries generated from each search term, repeated themes were grouped together and ranked according to the total sum of their relative search frequency (RSF) values. Results: Over the five-year time period, Google Trends data show that there was a 1.5% increase in the search term "dental pain". Results of the related queries for dental anesthesia show that there seems to be a large public interest in how long local anesthetics last (Total RSF = 231) - even more so than potential side effects or toxicities (Total RSF = 83). Conclusion: Based on these results it is recommended that clinicians clearly advice their patients on how long local anesthetics last to better manage patient expectations.

An Al Approach with Tabu Search to solve Multi-level Knapsack Problems:Using Cycle Detection, Short-term and Long-term Memory

  • Ko, Il-Sang
    • 한국경영과학회지
    • /
    • 제22권3호
    • /
    • pp.37-58
    • /
    • 1997
  • An AI approach with tabu search is designed to solve multi-level knapsack problems. The approach performs intelligent actions with memories of historic data and learning effect. These action are developed ont only by observing the attributes of the optimal solution, the solution space, and its corresponding path to the optimal, but also by applying human intelligence, experience, and intuition with respect to the search strategies. The approach intensifies, or diversifies the search process appropriately in time and space. In order to create a good neighborhood structure, this approach uses two powerful choice rules that emphasize the impact of candidate variables on the current solution with respect to their profit contribution. "Pseudo moves", similar to "aspirations", support these choice rules during the evaluation process. For the purpose of visiting as many relevant points as possible, strategic oscillation between feasible and infeasible solutions around the boundary is applied. To avoid redundant moves, short-term (tabu-lists), intemediate-term (cycle-detection), and long-term (recording frequency and significant solutions for diversfication) memories are used. Test results show that among the 45 generated problems (these problems pose significant or insurmountable challenges to exact methods) the approach produces the optimal solutions in 39 cases.lutions in 39 cases.

  • PDF

키워드 분포를 고려한 효과적 특허검색기법 (Searching Patents Effectively in terms of Keyword Distributions)

  • 이우기;송종수;강민구
    • 정보화연구
    • /
    • 제9권3호
    • /
    • pp.323-331
    • /
    • 2012
  • 지식정보화 시대의 본격화와 함께 지식재산권, 그 중에서도 특허의 중요성이 더욱 커져가고 있다. 이에 따라 효율적인 특허정보 검색방법의 필요성이 높아지고 있지만, 기존의 특허검색 엔진은 불리언 모델을 기반으로 단어의 존재 여부만을 파악하는 방식으로 검색결과에 노이즈 데이터가 너무 많이 포함되어 특허 검색에 오랜 시간을 허비하게 만들므로 '전문검색가'들이 수동으로 찾아주고 있는 실정이다. 이에 본 논문에서는 기존의 일반적 문서검색과 특허검색과의 차이점을 밝히고, 기존 특허검색의 한계성을 분석한다. 나아가 특허검색에 특화된 효과적 방법론 제안하여 검색 키워드가 각 특허 문서 내에서 차지하는 중요도와 각 문서 내에서 키워드 사이의 관계성을 파악하고 이에 대한 랭킹을 정하여 키워드와 관계성이 높은 특허가 상위에 랭크하며 노이즈 데이터를 하위에 랭크 함으로써 검색 결과에서 노이즈 데이터의 비율을 대폭 줄이는 방법을 제안한다. 마지막으로 실험을 통하여 Kipris 검색 결과와 비교함으로써 제안한 방법론의 우수성을 입증하였다.

공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘 (Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification)

  • 홍성삼;김동욱;한명묵
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2019
  • 빅 데이터에서 텍스트 마이닝은 많은 수의 데이터로부터 많은 특징 추출하기 때문에, 클러스터링 및 분류 과정의 계산 복잡도가 높고 분석결과의 신뢰성이 낮아질 수 있다. 특히 텍스트마이닝 과정을 통해 얻는 Term document matrix는 term과 문서간의 특징들을 표현하고 있지만, 희소행렬 형태를 보이게 된다. 본 논문에서는 탐지모델을 위해 텍스트마이닝에서 개선된 GA(Genetic Algorithm)을 이용한 특징 추출 방법을 설계하였다. TF-IDF는 특징 추출에서 문서와 용어간의 관계를 반영하는데 사용된다. 반복과정을 통해 사전에 미리 결정된 만큼의 특징을 선택한다. 또한 탐지모델의 성능 향상을 위해 sparsity score(희소성 점수)를 사용하였다. 스팸메일 세트의 희소성이 높으면 탐지모델의 성능이 낮아져 최적화된 탐지 모델을 찾기가 어렵다. 우리는 fitness function에서 s(F)를 사용하여 희소성이 낮고 TF-IDF 점수가 높은 탐지모델을 찾았다. 또한 제안된 알고리즘을 텍스트 분류 실험에 적용하여 성능을 검증하였다. 결과적으로, 제안한 알고리즘은 공격 메일 분류에서 좋은 성능(속도와 정확도)을 보여주었다.

다차원 텍스트 큐브를 이용한 호텔 리뷰 데이터의 다차원 키워드 검색 및 분석 (Multi-Dimensional Keyword Search and Analysis of Hotel Review Data Using Multi-Dimensional Text Cubes)

  • 김남수;이수안;조선화;김진호
    • 정보화연구
    • /
    • 제11권1호
    • /
    • pp.63-73
    • /
    • 2014
  • 웹의 발달로 텍스트 등으로 이루어진 비정형 데이터의 활용에 대한 관심이 높아지고 있다. 웹상에서 사용자들이 작성한 대부분의 비정형 데이터는 사용자의 주관이 담겨져 있어 이를 적절히 분석할 경우 사용자의 취향이나 주관적인 관점 등의 아주 유용한 정보를 얻을 수 있다. 이 논문에서는 이러한 비정형 텍스트 문서를 다양한 차원으로 분석하기 하는데 OLAP(온라인 분석 처리)의 다차원 데이터 큐브 기술을 활용한다. 다차원 데이터 큐브는 간단한 문자나 숫자 형태의 정형적인 데이터에 대해 다차원 분석하는데 널리 사용되었지만, 텍스트 문장으로 이루어진 비정형 데이터에 대해서는 활용되지 않았다. 이러한 텍스트 데이터베이스에 포함된 정보를 다차원으로 분석하기 위한 방법으로 텍스트 큐브 모델이 최근에 제안되었는데, 이 텍스트 큐브는 정보 검색에서 널리 사용하는 용어 빈도수(Term Frequency)와 역 인덱스(Inverted Index)를 측정값으로 이용하여 텍스트 데이터베이스에 대한 다차원 분석을 지원한다. 이 논문에서는 이러한 다차원 텍스트 큐브를 활용하여 실제 서비스되고 있는 호텔 정보 공유 사이트의 리뷰 데이터 분석에 활용하였다. 이를 위해 호텔 리뷰 데이터에 대한 다차원 텍스트 큐브를 생성하였으며, 이를 이용하여 다차원 키워드 검색 기능을 제공하여 사용자 중심의 의미있는 정보 검색이 가능한 시스템을 설계 및 구현하였다. 또한, 본 논문에서 제안하는 시스템에 대해 다양한 실험을 수행하였으며 이를 통해 제안된 시스템의 실효성을 검증하였다.

타부탐색, 메모리, 싸이클 탐지를 이용한 배낭문제 풀기

  • 고일상
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.514-517
    • /
    • 1996
  • In solving multi-level knapsack problems, conventional heuristic approaches often assume a short-sighted plan within a static decision enviornment to find a near optimal solution. These conventional approaches are inflexible, and lack the ability to adapt to different problem structures. This research approaches the problem from a totally different viewpoint, and a new method is designed and implemented. This method performs intelligent actions based on memories of historic data and learning. These actions are developed not only by observing the attributes of the optimal solution, the solution space, and its corresponding path to the optimal solution, but also by applying human intelligence, experience, and intuition with respect to the search strategies. The method intensifies, or diversifies the search process appropriately in time and space. In order to create a good neighborhood structure, this method uses two powerful choice rules that emphasize the impact of candidate variables on the current solution with respect to their profit contribution. A side effect of so-called "pseudo moves", similar to "aspirations", supports these choice rules during the evaluation process. For the purpose of visiting as many relevant points as possible, strategic oscillation between feasible and infeasible solutions around the boundary is applied for intensification. To avoid redundant moves, short-term (tabu-lists), intermediate-term (cycle detection), and long-term (recording frequency and significant solutions for diversification) memories are used. Test results show that among the 45 generated problems (these problems pose significant or insurmountable challenges to exact methods) the approach produces the optimal solutions in 39 cases.lutions in 39 cases.

  • PDF

텍스트 마이닝을 활용한 노인장기요양보험에서의 작업치료: 2007-2018년 (Occupational Therapy in Long-Term Care Insurance For the Elderly Using Text Mining)

  • 조민석;백순형;박엄지;박수희
    • 고령자・치매작업치료학회지
    • /
    • 제12권2호
    • /
    • pp.67-74
    • /
    • 2018
  • 목적 본 연구의 목적은 텍스트 마이닝이라는 빅데이터 분석 기법 중 하나를 활용하여 노인장기요양보험에서 작업치료의 역할을 정량적으로 분석하는 것이다. 연구방법 신문기사 분석을 위해 2007~208년까지 기간 설정 후 "노인장기요양보험+작업치료"를 주제어로 수집하였다. Textom이라는 웹 크롤링(Web Crawling)을 활용해 국내 검색엔진 네이버에서 <네이버뉴스>의 데이터베이스를 활용하였다. 수집결과 노인장기요양보험+작업치료 검색에서 510편의 뉴스 데이터의 기사제목과 원문을 수집한 후 연도별 기사 빈도, 핵심어분석을 시행하였다. 연구결과 연도별 기사 발행 빈도를 살펴보면 2015년과 2017년 발행한 기사 수가 70편(13.7%)으로 가장 많았고, 핵심어 분석 상위 10개의 용어는 '치매'(344)가 가장 많았으며, 작업과 핵심어의 관례를 알아보면, 치매, 치료, 병원, 건강, 서비스, 재활, 시설, 제도, 등급, 어르신, 전문, 급여, 공단, 국민이 관련이 있는 것으로 나타났다. 결론 본 연구에서는 텍스트 마이닝 기법을 통해 11년간의 노인장기요양보험의 언론 보도 동향을 토대로 관련 핵심 키워드에서 치매와 재활에 대해 사회적 요구와 작업치료사의 역할을 보다 객관적으로 확인하였다는 점에서 의의가 있다. 이 결과를 바탕으로 다음 연구에서는 연도에 따른 다양한 분석방법을 통해 연구방법론을 보완하여야 할 것이다.

빅데이터 검색 정확도에 미치는 다양한 측정 방법 기반 검색 기법의 효과 (Impact of Diverse Document-evaluation Measure-based Searching Methods in Big Data Search Accuracy)

  • 김지영;한다현;김종권
    • 정보과학회 논문지
    • /
    • 제44권5호
    • /
    • pp.553-558
    • /
    • 2017
  • 빅데이터의 공급이 늘어남에 따라, 이로부터 유용한 정보를 추출해내기 위한 학계와 업계의 연구가 활발히 진행 되고 있다. 특히 분석한 정보의 특징과 함께, 정보 검색 시 검색자의 의도를 함께 반영하여 정보를 여과해 주는 것이 대부분의 연구의 최종 목표이다. 정확하게 분석된 자료는 기업이 제공하는 서비스에 대한 사용자의 충성도를 높여주고, 사용자 스스로 보다 효율적이고 효과적으로 정보를 이용할 수 있게 된다. 본 논문에서는 가장 높은 빈도로 사용되는 검색 분야인 기사를 검색하는 경우의 정확도를 높이기 위해, 관련 데이터를 TF-IDF, 결정 트리, 코사인 유사도, 단순 베이지안 분류기 등의 다양한 측도방법으로 평가해 보고, 이를 분석하였다. 또한, 분석 결과를 바탕으로 가장 적합한 측도 방법을 제안한다.