• Title/Summary/Keyword: Seamless Control

Search Result 189, Processing Time 0.03 seconds

Seamless Mode Transfer of Indirect Current Controlled Parallel Grid-Connected Inverters (간접전류제어방식 병렬형 계통연계 인버터의 무순단 모드절환)

  • Song, Injong;Choi, Junsoo;Lim, Kyungbae;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.334-341
    • /
    • 2019
  • This study proposes the control strategy for the seamless mode transfer of indirect current controlled parallel grid-connected inverters. Under the abnormal grid condition, the grid-connected inverter can convert the operation mode from grid-connected to stand-alone mode to supply power to the local load. For a seamless mode transfer, the time delay problems caused by the accumulated control variable error must be solved, and the indirect current control method has been applied as one of the solutions. In this study, the design of control parameters for the proportional-resonant-based triple-loop indirect current controller and the control strategy for the seamless mode transfer of parallel grid-connected inverters are described and analyzed. The validity of the proposed mode transfer method is verified by the PSiM simulation results.

Indirect Control of Utility Interactive Inverter for Seamless Transfer (Seamless Transfer를 위한 계통연계형 인버터의 간접전류 제어기법)

  • Yu, Tae-Sik;Choi, Se-Wan;Kim, Hyo-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.329-332
    • /
    • 2005
  • Distributed generation (DG) systems fall in islanding operation when they still in operation even when the main grid is out of electric power Islanding operation is further classified into intentional islanding and unintentional islanding operations. In intentional islanding operation, the DG backs up critical loads while it separates from the main grid on islanding detection. Intentional islanding operation increases utilization of the DG system during the islanding operation. This paper proposes reasonal inverter topology and its control algorithm for seamless transfer of DG systems in intentional islanding operation.

  • PDF

A Seamless and Autonomous Mode Transfer Method of Grid-connected Inverter in Microgrid (마이크로그리드에서 계통연계 인버터의 자율적이며 끊김없는 모드전환 기법)

  • Park, Sung-Youl;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.349-355
    • /
    • 2019
  • A grid-connected inverter with critical loads should be able to supply a stable voltage to critical loads at mode change and during clearing time while detecting unintentional islanding. This study proposes a mode transfer method for a grid-connected inverter with critical loads. The proposed method, which integrates the grid-connected and islanded mode control loops into one control block, provides an autonomous and seamless mode transfer from the current control to the voltage control. Therefore, the proposed scheme can supply a stable voltage to critical loads at mode change and during clearing time. Experimental results are provided to validate the proposed method.

Model Predictive Voltage Control for Seamless Transfer of DC-DC Converters in ESS Applications

  • Le, Duc Dung;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.369-370
    • /
    • 2017
  • In this paper, a model predictive voltage control (MPVC) for the DC-DC buck-boost converters is proposed. It provides a fast seamless bidirectional control method to maintain the DC grid voltage, battery voltage and current within predefined limits. In addition, an inner current control loop is not employed, so that the bandwidth of controller can be higher compared with the PI controller.

  • PDF

Seamless Mode Transfer of Utility Interactive Inverters Based on Indirect Current Control

  • Lim, Kyungbae;Song, Injong;Choi, Jaeho;Yoo, Hyeong-Jun;Kim, Hak-Man
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.254-264
    • /
    • 2019
  • This paper proposes an indirect current control technique based on a proportional resonant (PR) approach for the seamless mode transfer of utility interactive inverters. Direct-current and voltage hybrid control methods have been used for inverter control under grid-connected and islanded modes. A large bandwidth can be selected due to the structure of single-loop control. However, this results in poor dynamic transients due to sudden changes of the controller during mode changes. Therefore, inverter control based on indirect current is proposed to improve the dynamic transients by consistently controlling the output voltage under all of the operation modes. A PR-based indirect current control topology is used in this study to maintain the load voltage quality under all of the modes. The design processes of the PR-based triple loop are analyzed in detail while considering the system stability and dynamic transients. The mode transfer techniques are described in detail for both sudden unintentional islanding and islanded mode voltage quality improvements. In addition, they are described using the proposed indirect control structure. The proposed method is verified by the PSiM simulations and laboratory-scale VDER-HILS experiments.

The Study of the Seamless Handoff Algorithm in PDSNs (PDSN간 Seamless 핸드오프 알고리즘에 관한 연구)

  • Sin, Dong-Jin;Kim, Su-Chang;Im, Seon-Bae;Jeon, Byeong-Jun;Song, Byeong-Gwon;Jeong, Tae-Ui
    • The KIPS Transactions:PartC
    • /
    • v.9C no.2
    • /
    • pp.257-266
    • /
    • 2002
  • In 3GPP2 wireless data communications, Mobile IP is used to support macro mobility and PDSN performs the function of foreign agent. The mobility supported when a mobile station moves from one PDSN to another is called a macro mobility. In this Paper, we first examine the possibilities of packet loss and change of packet sequences that can be occurred in macro mobility. Then, to resolve such Problems, we suggest a seamless handoff algorithm in PDSNs based on packet sequence control for each of down-stream and up-stream cases respectively.

Session Control Technique Providing Seamless Service in Next-Generation Communication Environment Based on IMS (IMS 기반 차세대 통신 환경에서 서비스 연속성을 위한 서비스 세션제어 기법)

  • Nam, Seung-Min;Kim, Ji-Ho;Lee, Hyun-Jeong;Song, Oh-Young
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.117-124
    • /
    • 2009
  • Recently, the application of network technology extends to all areas because of development of digital information technology. Thus, networks are being evolved towards a next-generation communication environments where all information devices, home appliances, and object are connected and interoperated. In order to provide adequate convergence services in IMS-based networks that are the core technology of the next-generation communication environments, seamless service should be possible although the underlying network and the device in use may change in the networks. In this paper, we propose an efficient architecture, algorithm, and protocol of service session control for seamless service in such networks.

Fast and Seamless Handoff Control in Wireless ATM Networks (무선 ATM 네트워크에서 빠르고 매끄러운 핸드오프 제어)

  • Koh, Jae-Young
    • Convergence Security Journal
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 2007
  • We propose a distributed anchor Crossover Switches (CX) searching algorithm to play an important role in ensuring fast and seamless handoff control in wireless ATM networks. Within networks that are grouped together, connection management is done for each group by anchor switches, and Permanent Virtual Circuit (PVC) with a narrow bandwidth is assigned between anchors for exchange of information. The proposed algorithm enables quick searching of a targeted CX, makes management of the overall network easier, and reduces system overhead or propagation delay time, thus providing fast and seamless handoff.

  • PDF

Parallel Operation Control Method of Grid-connected Inverters with Seamless Transfer for Energy Storage System in Microgrid (마이크로그리드에서 에너지 저장시스템을 위한 무순단 절체 기능을 갖는 계통연계형 인버터의 병렬운전 제어기법)

  • Park, Sung-Youl;Kim, Joo-Ha;Jung, Ah-Jin;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2016
  • In the microgrid, inverters for energy storage system are generally constructed in a parallel structure because of capacity expandability, convenience of system maintenance, and reliability improvement. Parallel inverters are required to provide stable voltage to the critical load in PCC and to accurately share the current between each inverter. Furthermore, when islanding occurs, the inverters should change its operating mode from grid-connected mode to stand-alone mode. However, during clearing time and control mode change, the conventional control method has a negative impact on the critical load, that is, severe fluctuating voltage. In this study, a parallel operation control method is proposed. This method provides seamless mode transfer for the entire transition period, including clearing time and control mode change, and has accurate current sharing between each inverter. The proposed control method is validated through simulation and experiment.

A Seamless Transfer Algorithm Based on Frequency Detection with Feedforward Control Method in Distributed Generation System

  • Kim, Kiryong;Shin, Dongsul;Lee, Jaecheol;Lee, Jong-Pil;Yoo, Dong-Wook;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1066-1073
    • /
    • 2015
  • This paper proposes a control strategy based on the frequency detection method, comprising a current control and a feed-forward voltage control loop, is proposed for grid-interactive power conditioning systems (PCS). For continuous provision of power to critical loads, PCS should be able to check grid outages instantaneously. Hence, proposed in the present paper are a frequency detection method for detecting abnormal grid conditions and a controller, which consists of a current controller and a feedforward voltage controller, for different operation modes. The frequency detection method can detect abnormal grid conditions accurately and quickly. The controller which has current and voltage control loops rapidly helps in load voltage regulation when grid fault occurs by changing reference and control modes. The proposed seamless transfer control strategy is confirmed by experimental results.