• Title/Summary/Keyword: Sealing materials

Search Result 328, Processing Time 0.026 seconds

Properties of double-layered anodizing films on Al alloys formed by two consecutive anodizings (알루미늄 합금의 연속식 양극산화법으로 형성시킨 이중 산화막층의 특성)

  • Jeong, Nagyeom;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.30-36
    • /
    • 2021
  • In this study, double-layered anodizing films were formed on Al 5052 and Al 6061 alloys consecutively first in sulfuric acid and then in oxalic acid, and hardness, withstand voltage, surface roughness and acid resistance of the anodizing films were compared with single-layered anodizing films in sulfuric acid and oxalic acid electrolytes. Hardness of the double-layered anodizing film decreased with increasing ratio of inner layer to outer layer for both Al 5052 and Al 6061 alloys, suggesting that outer anodizing film formed in sulfuric acid electrolyte is damaged during the second anodizing in oxalic acid electrolyte. Withstand voltage of the double-layered anodizing films increased with increasing the thickness ratio of inner layer to outer layer. Surface roughness of the double-layered anodizing films were comparable with that of single-layered anodizing film formed in sulfuric acid but higher than that of single layer anodizing film formed in oxalic acid electrolyte. In acid resistance test, all of the double-layered and single-layered anodizing films showed good acid resistance more than 3 h without any visible gas evolution, which is attributable to sealing of pores. Based on the experimental results obtained in this work, it is possible to design a double-layered anodizing film with cost-effectiveness and improved physical and electrical properties by combining two consecutive anodizing processes of sulfuric acid anodizing and oxalic acid anodizing methods.

A Study on Comparison of Outdoor Wind Pressure Performance According to Outdoor Exposure and Acceleration Deterioration Methods of Structural Sealants Applied to Curtain Wall (커튼월에 적용된 구조용 실링재의 옥외폭로와 실내복합열화 처리방법에 따른 내풍압성능 비교연구)

  • Jang, Pil Sung;Hong, Soon Gu;Kim, Sung Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.279-287
    • /
    • 2018
  • Sealants are an important element of modern architecture and serve as a building protection against weathering by providing barriers against ingress of moisture, air, and other materials. Exposure to a variety of environments often reduces lifespan due to changes in physical, chemical and mechanical characteristics, and UV, humidity, and temperature expansion are important issues that are directly related to durability. In this study, a combined deterioration test chamber was developed to simulate the environment of the open air as an instrument for verifying the durability of structural sealing materials indoors. In order to replicate special weather conditions, such as yellow dust, acid rain, and contamination by microorganisms, it was deemed impossible to replicate the outdoor environment by 100 %, and the results of the results of the results of the external exposure test of the structural sealant and the combined deterioration testing device. As a result of the displacement test of the outdoor exposure test, it was determined that the sealant was breaking apart and that it would be smooth, and the displacement would be up to three times greater than the initial material value of 1 year. The displacement test results of the combined deterioration test device show the tendency to deteriorate, decreasing the elasticity and tensile characteristics. In the case of denatured silicon, the current 400 cycles have been completed to confirm 12 months of degradation of the external exposure. The deformation of the test specimen cannot be verified with the naked eye, so it is considered that the conditions of the specimen are more stable than the silicon sealant. As a result of the outdoor exposure test, if the combined deterioration test device is structured and proposed in the relevant guidance or specification, the anticipated lifespan of 12 months in the actual use environment can be verified indoors and below 3 months later, economically.

Exophytic bone formation using porous titanium membrane combined with pins in rabbit calvarium. (핀 고정 천공형 티타늄막을 이용한 수직적 체조제증대술에 관한 연구)

  • Kim, Young;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.273-288
    • /
    • 2006
  • The purpose of this study was to evaluate exophytically vertical bone formation in rabbit calvaria by the concept of guided bone regeneration with a custom-made porous titanium membrane combined with bone graft materials. For this purpose, a total of 12 rabbits were used, and decorticated calvaria were created with round carbide bur to promote bleeding and blood clot formation in the wound area. Porous titanium membranes (0.5 mm in pore diameter, 10 mm in one side, 2 mm in inner height) were placed on the decorticated calvaria, fixed with metal pins and covered with full-thickness flap. Experimental group I was treated as titanium membrane only. Experimental group II, III, IV was treated as titanium membrane with BBM, titanium membrane with DFDB and titanium membrane with FDB. The animals were sacrificed at 8 and 12 weeks after surgery, and new bone formation was assessed by histomorphometric as well as statistical analysis. 1. Porous titanium membrane was biocompatable and capable of maintaining the regeneration space. 2. At 8 and 12 weeks, all groups demonstrated exophytic bone formation and there was a statistical significant difference among different groups only at 12 weeks. 3. The DFDB group revealed the most new bone formation compared to other groups (p<0.05). 4. At 12 weeks, DFDB and FDB groups showed the most significant resorption of graft materials (p<0.05). 5. The BBM was not resorbed at all until 12 weeks. 6. The fixation metal pin revealed excellent effect in peripheral sealing. On the basis of these findings, we conclude that a porous titanium membrane may be used as an augmentation membrane for guided bone regeneration, and DFDB as an effective bone forming graft material. The fixation of the membrane with pin will be helpful in GBR technique. However, further study is required to examine their efficacy in the intraoral experiments.

Determination of 226Ra in TENORM Sample Considering Radon Leakage Correction

  • Lim, Sooyeon;Syam, Nur Syamsi;Maeng, Seongjin;Lee, Sang Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.127-133
    • /
    • 2021
  • Background: Phosphogypsum is material produced as a byproduct in fertilizer industry and is generally used for building materials. This material may contain enhanced radium-226 (226Ra) activity concentration compared to its natural concentration that may lead to indoor radon accumulation. Therefore, an accurate measurement method is proposed in this study to determine 226Ra activity concentration in phosphogypsum sample, considering the potential radon leakage from the sample container. Materials and Methods: The International Atomic Energy Agency (IAEA) phosphogypsum reference material was used as a sample in this study. High-purity germanium (HPGe) gamma spectrometry was used to measure the activity concentration of the 226Ra decay products, i.e., 214Bi and 214Pb. Marinelli beakers sealed with three different sealing methods were used as sample containers. Due to the potential leakage of radon from the Marinelli beaker (MB), correction to the activity concentration resulted in gamma spectrometry is needed. Therefore, the leaked fraction of radon escaped from the sample container was calculated and added to the gamma spectrometry measured values. Results and Discussion: Total activity concentration of 226Ra was determined by summing up the activity concentration from gamma spectrometry measurement and calculated concentration from radon leakage correction method. The results obtained from 214Bi peak were 723.4 ± 4.0 Bq·kg-1 in MB1 and 719.2 ± 3.5 Bq·kg-1 in MB2 that showed about 5% discrepancy compared to the certified activity. Besides, results obtained from 214Pb peak were 741.9 ± 3.6 Bq·kg-1 in MB1 and 740.1 ± 3.4 Bq·kg-1 in MB2 that showed about 2% difference compared to the certified activity measurement of 226Ra concentration activity. Conclusion: The results show that radon leakage correction was calculated with insignificant discrepancy to the certified values and provided improvement to the gamma spectrometry. Therefore, measuring 226Ra activity concentration in TENORM (technologically enhanced naturally occurring radioactive material) sample using radon leakage correction can be concluded as a convenient and accurate method that can be easily conducted with simple calculation.

Review on Rock-Mechanical Models and Numerical Analyses for the Evaluation on Mechanical Stability of Rockmass as a Natural Barriar (천연방벽 장기 안정성 평가를 위한 암반역학적 모델 고찰 및 수치해석 검토)

  • Myung Kyu Song;Tae Young Ko;Sean S. W., Lee;Kunchai Lee;Byungchan Kim;Jaehoon Jung;Yongjin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.445-471
    • /
    • 2023
  • Long-term safety over millennia is the top priority consideration in the construction of disposal sites. However, ensuring the mechanical stability of deep geological repositories for spent fuel, a.k.a. radwaste, disposal during construction and operation is also crucial for safe operation of the repository. Imposing restrictions or limitations on tunnel support and lining materials such as shotcrete, concrete, grouting, which might compromise the sealing performance of backfill and buffer materials which are essential elements for the long-term safety of disposal sites, presents a highly challenging task for rock engineers and tunnelling experts. In this study, as part of an extensive exploration to aid in the proper selection of disposal sites, the anticipation of constructing a deep geological repository at a depth of 500 meters in an unknown state has been carried out. Through a review of 2D and 3D numerical analyses, the study aimed to explore the range of properties that ensure stability. Preliminary findings identified the potential range of rock properties that secure the stability of central and disposal tunnels, while the stability of the vertical tunnel network was confirmed through 3D analysis, outlining fundamental rock conditions necessary for the construction of disposal sites.

Field Survey on the Maintenance Status of Greenhouses in Korea (온실의 유지관리 실태조사 분석)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Hyeon Tae;Lee, Si Young;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.148-157
    • /
    • 2014
  • The purpose of this study was to investigate greenhouse maintenance by farms by looking into greenhouses across the nation for greenhouse specification, disaster-resistance greenhouse construction, types and degree of damage due to natural disasters, pre-inspection in case of typhoon or heavy snow forecast, and fire-fighting facilities to prevent a fire. The findings were summarized as follows: as for greenhouse specification, the highest proportion of them were 90 m or longer both in single- and multi-span greenhouses in terms of length; 8 m or wider and 7.0~7.9 m in single- and multi-span greenhouses, respectively, in terms of width; 1.5~1.9 m and 2.0~2.9 m in single-and multi-span greenhouses, respectively, in terms of height; and 3.0~3.9 m and 6 m in single- and multi-span greenhouses, respectively, in terms of diameter. As for disaster-resistance greenhouses, farmers were reluctant to install such greenhouses. The low distribution of disaster-resistance greenhouses was attributed to the greenhouses built dependent on the old practice, the greenhouses already completed, and relatively high construction costs. As for damage by natural disasters, greenhouses were subject to more damage by typhoons than heavy snow. They mainly inspected the ceiling and side windows, entrances, and fixation bands for covering materials in case of typhoon forecast and the heating devices in case of heavy snow forecast. As for repair methods for greenhouse pipe corrosion, they preferred partial replacement to painting and did not use stiffeners for structures to prevent a natural disaster in most cases. As for the maintenance of greenhouse covering materials, most farmers inspected their sealing property but did not clean the coverings for light transmission. The destruction of structural materials can be prevented by eliminating greenhouse covering materials during a typhoon, but they were not able to do so because of the covering material replacement costs and the crops they were growing. The study also examined whether greenhouse farms had fire-fighting facilities to prevent a fire and found that they lacked the perception of greenhouse fire prevention to a great degree.

Evaluation of canal preparation for apical sealing with various Ni-Ti rotary instruments (수 종의 Ni-Ti 회전 기구들을 이용한 치근단 폐쇄 향상을 위한 근관 확대 평가)

  • Shin, Yoo-Seok;Shin, Su-Jung;Song, Min-Ju;Kim, Eui-Seong
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.300-305
    • /
    • 2011
  • Objectives: The aim of this study was to evaluate the various NiTi rotary instruments regarding their ability to provide a circular apical preparation. Materials and Methods: 50 single canal roots were selected, cut at the cementodentinal junction and the coronal 1/3 of the canals was flared using Gates Glidden burs. Samples were randomly divided into 5 experimental groups of 10 each. In group I, GT files, Profile 04 and Quantec #9 and #10 files were used. In Group II Lightspeed was used instead of Quantec. In Group III, Orifice shaper, Profile .06 series and Lightspeed were used. In Group IV, Quantec #9 and #10 files were used instead of Lightspeed. In Group V, the GT file and the Profile .04 series were used to prepare the entire canal length. All tooth samples were cut at 1 mm, 3 mm and 5 mm from the apex and were examined under the microscope. Results: Groups II and III (Lightspeed) showed a more circular preparation in the apical 1mm samples than the groups that used Quantec (Group I & IV) or GT files and Profile .04 series.(Group V)(p < 0.05) There was no significant difference statistically among the apical 3, 5 mm samples. In 5 mm samples, most of the samples showed complete circularity and none of them showed irregular shape. Conclusions: Lightspeed showed circular preparation at apical 1 mm more frequently than other instruments used in this study. However only 35% of samples showed circularity even in the Lightspeed Group which were enlarged 3 ISO size from the initial apical binding file (IAF) size. So it must be considered that enlarging 3 ISO size isn't enough to make round preparation.

Effect of Construction Joint on Leakage Resistance of Gas in Reinforced Concrete Pressure Vessels (철근콘크리트 압력용기에서 시공이음이 가스의 누설저항에 미치는 영향)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • In the nuclear power plant, the steel or polymer liner plates are adopted to prohibit the inner concrete surface from contacting with gas or liquid materials. If there is an accident, the plate may be damaged, and, in this case, concrete shall have the final responsibility to safety requirements. In this paper, an experimental research was carried out to investigate the effects of construction joint and wet and loading conditions on the permeability of concrete. The test results showed that, under a construction joint in the wet condition, leakage of gas pressure has been started from $1kg/cm^2$. However, when there are no construction joints, it is initiated from $2kg/cm^2$. In addition, under the air dried and unloading condition, regardless of with or without the presence of the construction joint, since the gas passage that exist in concrete is constant, leakage has a constant tendency to increase. Finally, under the loading condition, as described in Reference 1, since leakage is inversely proportional to the thickness of the wall, and, considering the wall thickness of the actual plant, it is found that there will not be no problem in the sealing of the gas.

A Study on the Thermal Stability of Long-Term Fuel Storage and Lifetime Estimation of Rubber O-ring in Contacted with Fuel (장기 저장연료의 열안정성 및 연료접촉 고무오링의 수명예측 연구)

  • Chung, K.W.;Hong, J.S.;Kim, Y.W.;Han, J.S.;Jeong, B.H.;Kwon, T.S.;Suh, D.O.;Sung, M.J.;Kwon, Y.I.
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.197-207
    • /
    • 2018
  • Thermal deterioration of fuel due to long-term storage influences engine performance and causes malfunctions. Fuel stability is usually evaluated via heat resistance and thermal stability during a brief heat shock at high temperature; storage stability in this scenario means that there is very little change in the quality of the fuel during long-term storage. In addition, rubber-based products such as oil seals, O-rings, and rubber hoses can influence the quality of the fuel. When these rubber products are in contact with fuel, they can swell, mechanically weaken, and occasionally crack, thus leaking low molar weight rubber and additives including plasticizer and antioxidant into the fuel to degrade its properties and shorten its useful lifetime. This study determines the thermal stabilities of three kinds of synthetic fuels by evaluating their low temperature kinematic viscosities, chemical composition changes via GC analyses, gross heat of combustion, and color changes. We evaluate the compression set of O-rings by immersing one NBR and two FKM rubber O-rings in the three synthetic fuel samples in airtight containers at variable storage temperatures for six months; from this, we estimate the lifetimes of the O-rings using the Power law model. There were very little changes in the chemical compositions and gross heat of combustion after six months of the experiment. The lifetimes are thus dependent on the materials of the rubber products, and in particular, the FKM O-ring was calculated to have a theoretical lifetime of 200 to 5,700 years. These results indicate that the synthetic fuels maintain their physical properties even after long-term storage at high temperatures, and the FKM O-ring is suitable for long-term sealing of these fuels.

Enhancement of PLED lifetime using thin film passivation with amorphous Mg-Zn-F

  • Kang, Byoung-Ho;Kim, Do-Eok;Kim, Jae-Hyun;Seo, Jun-Seon;Kim, Hak-Rin;Lee, Hyeong-Rag;Kwon, Dae-Hyuk;Kang, Shin-Won
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.8-11
    • /
    • 2010
  • In this study, a new thin films passivation technique using Zn with high electronegativity and $MgF_2$, a fluorine material with better optical transmittance than the sealing film materials that have thus far been reported was proposed. Targets with various ratios of $MgF_2$ to Zn (5:5, 4:6 and 3:7) were fabricated to control the amount of Zn in the passivation films. The Mg-Zn-F films were deposited onto the substrates and Zn was located in the gap between the lattices of $MgF_2$ without chemical metathesis in the Mg-Zn-F films. The thickness and optical transmittance of the deposited passivation films were approximately 200 nm and 80%, respectively. It was confirmed via electron dispersive spectroscopy (EDS) analysis that the Zn content of the film that was sputtered using a 4:6 ratio target was 9.84 wt%. The Zn contents of the films made from the 5:5 and 3:7 ratio targets were 2.07 and 5.01 wt%, respectively. The water vapor transmission rate (WVTR) was determined to be $38^{\circ}C$, RH 90-100%. The WVTR of the Mg-Zn-F film that was deposited with a 4:6 ratio target nearly reached the limit of the equipment, $1\times10^{-3}\;gm^2{\cdot}day$. As the Zn portion increased, the packing density also increased, and it was found that the passivation films effectively prevented the permeation by either oxygen or water vapor. To measure the characteristics of gas barrier, the film was applied to the emitting device to evaluate their lifetime. The lifetime of the applied device with passivation was increased to 25 times that of the PLED device, which was non-passivated.