• Title/Summary/Keyword: Sealing Efficiency

Search Result 79, Processing Time 0.028 seconds

MgO Thin Film Characterization in a Vacuum In-line Sealing Process for High-efficiency PDP (고효율 PDP를 위한 진공 인라인 실장에서의 MgO 보호막 영향분석)

  • Kwon, Sang-Jik;Jang, Chan-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1019-1023
    • /
    • 2005
  • We have examined the electrical and optical characteristics of the plasma display panel produced by vacuum in-line sealing technology. In the MgO layer deposited at room temperature, after sealing at the panel temperature of $430^{\circ}C$, the luminous efficiency decreased compared with that of the panel before sealing. Moreover, firing and sustain voltage of the sealed panel increased compared with that of the panel before sealing. This was resulted from that the MgO protective layer was cracked by the softening of the dielectric layer during the sealing process. In order to avoid the MgO crack during the vacuum in-line sealing, thermally stable MgO layer or lower temperature sealing is required.

Performance Variation of the Air Curtain for Various Discharge Angles in Feating Space (난방공간에서 에어커튼의 토출각도 변화에 따른 성능 변화)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2010
  • Air curtains are widely used for gates of shopping mall, warehouse, cold stores and refrigerated display cabinets. The purpose of the air curtain is to reduce the infiltration of outdoor air and heat loss from the air conditioning space to ambient air. The discharge angle of air curtain is very important as the sealing efficiency is affected by it. This paper presents a performance of single jet air curtain in heating space when the discharge angle of nozzle changes. A numerical simulation is used to study the influence of various parameters on the efficiency of the downward-blowing air curtain device which is installed inside of the wall above the door. The performance of the air curtain is evaluated by sealing efficiency which provides the assessment of the energy savings. A condition of discharge angle that has the highest sealing efficiency is proposed.

Developing Sealing Material of a Dye-Sensitized Solar Cell for Outdoor Power (실외 발전을 위한 염료감응형 태양전지의 봉지재 개발)

  • Ki, Hyun-Chul;Hong, Kyung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.819-823
    • /
    • 2016
  • DSSC (dye-sensitized solar cell) is expected to be one of the next-generation photovoltaics because of its environment-friendly and low-cost properties. However, commercialization of DSSC is difficult because of the electrolyte leakage. We propose thermal curable base on silicon resin and apply a unit cell and large area ($200{\times}200mm$) dye-sensitized solar cell. The resin aimed at sealing of DSSC and gives a promising resolution for sealing of practical DSSC. In result, the photoelectric conversion efficiency of the unit cell and the module was 6.63% and 5.49%, respectively. In the durability test result, the photoelectric conversion efficiency of the module during 500, 1,000, 1,500 and 2,000 hours was 0.73%, 0.73%, 1.82% and 2.36% respectively. It was confirmed that the photoelectric conversion efficiency characteristics are constant. We have developed encapsulation material of thermal curing method excellent in chemical resistance. A sealing material was applied to the dye-sensitized solar cell and it solved the problem of durability the dye-sensitized solar cell. Sealing material may be applied to verify the possibility of practical application of the dye-sensitized solar cell.

Electrical and Optical Characteristics of Plasma Display Panel Fabricated by Vacuum In-line Sealing (진공 인라인 실장에 의해 제작된 플라즈마 디스플레이 패널의 전기적ㆍ광학적 특성)

  • Park, Sung-Hyun;Lee, Neung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.344-349
    • /
    • 2005
  • The optical and electrical characteristics of plasma display panel(PDP) using the vacuum in-line sealing technology compared with the conventional sealing process in this research. This PDP consisted of MgO protecting layer by e-beam evaporation and battier rib, transparent dielectric layer, dielectric layer, and electrodes by screen printer and then sealed off on Ne-Xe(4 %) 400 Torr and 430。C. The brightness and luminous efficiency were good as the base vacuum level was higher, and it was to check the advantage of high vacuum level sealing, one of the strong points of the vacuum in-line sealing process. However, the brightness and luminous efficiency was dropped sharply because of a crack on MgO protecting layer by the difference of the expansion and contraction stress on high temperature in the vacuum states between MgO and substrate. Fortunately, the crack was prevented by MgO was deposited on higher temperature than 300。C. Finally, the PDP, was fabricated by the vacuum in-line sealing process, resulted the lower brightness than processing only the thermal annealing treatment in the vacuum chamber, but the luminous efficiency was increased by the reducing power consumption with the decreasing luminous current. The vacuum in-line sealing technology was not to need the additional thermal annealing process and could reduce the fabrication process and bring the excellent optical and electrical properties without the crack of MgO protecting layer than the conventional sealing process.

Process TAC Time Reduction Technology for Improving the Efficiency and Throughput of the PDP (PDP 효율 및 생산성 향상을 위한 공정단순화 기술)

  • Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.45-50
    • /
    • 2013
  • This paper focuses on the fundamental issues for improving the efficiency and throughput of the AC PDP (Plasma Display Panel) manufacturing. The properties of the MgO protective layer affect the PDP efficiency. Especially, the secondary electron emission efficiency was affected on the deposition rate of MgO during the evaporation. In this study, the deposition rate of 5 $\AA$/s has given the maximum efficiency value of 0.05 It is demonstrated that the impurity gases such as $H_2O$, $CO_2$, CO or $N_2$, and $O_2$ can be remained inside the PDP panel before sealing and the amount of the impurity gases decreased rapidly as the base vacuum level increased, especially near $10^{-5}$ torr. The fundamental solution in order to overcome these problems is the vacuum in-line sealing process from the MgO evaporation to the final sealing of the panel without breaking the vacuum. We have demonstrated this fundamental process technology and shown the feasibility. The firing voltage was reduced down to 285 V at the base vacuum value of $10^{-6}$ torr, whreras it was about 328 V at the base vacuum value of $10^{-3}$ torr.

The Characteristics Depending on the Annealing Conditions in the PDP Vacuum In-line Sealing

  • Kwon, Sang-Jik;Kim, Jee-Hoon;Jang, Chan-Kyu;Park, Sung-Hyun;Whang, Ki-Woong;Lee, Kyung-Wha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.703-706
    • /
    • 2004
  • This paper deals with the various sealing conditions in a vacuum and the discharge characteristics. The MgO thin film is prepared by e-beam evaporation method. Sealing process was performed in a vacuum at panel temperature of 430 $^{\circ}C$. We find the cracks on the MgO film surface, which results in higher discharge voltage and lower luminous efficiency. The vacuum in-line sealing technology does not require additional annealing process but induces the MgO cracks because of the high temperature sealing cycle in a vacuum. Therefore we modify the vacuum in-line sealing cycle which the MgO cracks are not found and the good characteristics of plasma displays are found in higher sealing pressure at sealing temperature of 430 $^{\circ}C$.

  • PDF

The Vacuum In-Line Sealing Process for High Efficiency PDP (고효율 PDP 제작을 위한 진공 인라인 실장 공정)

  • Kwon, Sang-Jik;Jang, ChAn-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.23-27
    • /
    • 2005
  • The effects of the base vacuum level on a plasma display panel (PDP) produced by the vacuum in-line sealing technology were investigated. The main equipment of the vacuum in-line sealing process consists of the sealing chamber, pumping systems for evacuating, mass flow controller for introducing the plasma gases, and other measuring systems. During the sealing process, the impurity gases were fully evacuated and the panel was prevented from the adsorption of impurity gases. As a result, the brightness increased as the impurity gas density decreased, so we found that the vacuum in-line sealing process was more efficient technology an the conventional sealing process.

  • PDF

Effects of Base Vacuum Level on Discharge Characteristics in Vacuum In-Line Sealing Process for High Efficient PDP

  • Kwon, Sang-Jik;Jang, Chan-Kyu
    • Journal of Information Display
    • /
    • v.5 no.4
    • /
    • pp.7-11
    • /
    • 2004
  • Effects of base vacuum level on the electrical and optical characteristics of the plasma display panel (PDP) were investigated. The relationship between efficiency and base vacuum level before filling discharge gas was analyzed. For the base vacuum level of $1{\times}10^{-4}$ torr, firing voltage of a 2-inch diagonal PDP panel was 232 V at the discharge gas pressure of 400 torr and luminous efficiency was 1.5 lm/W at 180V sustaining pulse. On the other hand for $1{\times}10^{-6}$torr, the firing voltage was reduced to 215 V and luminous efficiency was improved considerably to 2.5 lm/W. We successfully demonstrated the smooth operation of tip-less PDP fabricated using vacuum in-line sealing method.

Development of an Optimal Trajectory Planning Algorithm for an Automated Pavement Crack Sealer

  • Yoo, Hyun-Seok;Kim, Young-Suk
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • In the last two decades, several tele-operated and machine-vision-assisted systems have been developed in the construction and maintenance area, such as pavement crack sealing, sewer pipe rehabilitation, and excavation. In developing such tele-operated and machine-vision-assisted systems, trajectory plans are very important tasks for the optimal motions of robots whether their environments are structured or unstructured. This paper presents an optimal trajectory planning algorithm used for a machine-vision-assisted automatic pavement crack sealing system. In this paper, the performance of the proposed optimal trajectory planning algorithm is compared with the greedy trajectory plans, which are used in the previously developed pavement crack sealing systems. The comparison is based on the computational cost vs. the overall gains in crack sealing efficiency. Finally, it is concluded that the proposed algorithm plays an important role in the productivity improvement of the developed automatic pavement crack sealing system.

Comparison of Developmental Efficiency of Murine Somatic Cell Nuclear Transfer Protocol

  • Moon, Jeonghyeon;Jung, Miran;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.81-86
    • /
    • 2017
  • The Somatic cell nuclear transfer (SCNT) method can be applied to various fields such as species conservation, regenerative medicine, farming industries and drug production. However, the efficiency using SCNT is very low for many reasons. One of the troubles of SCNT is that it is highly dependent on the researcher's competence. For that reason, four somatic cell nuclear injection methods were compared to evaluate the effect of hole-sealing process and existence of cytochalasin B (CB) on efficiency of murine SCNT protocol. As a results, the microinjection with the hole-sealing process, the oocyte plasma membrane is inhaled with injection pipette, in HCZB with CB was presented to be the most efficient for the reconstructed in SCNT process. In addition, we demonstrated that the oocytes manipulated in Hepes-CZB medium (HCZB) with CB does not affect the developmental rate and the morphology of the blastocyst during the pre-implantation stage. For this reason, we suggest the microinjection involving hole-sealing in HCZB with CB could improve SCNT process efficiency.