• 제목/요약/키워드: Seal Groove

검색결과 46건 처리시간 0.019초

고압터보펌프용 극저온 베어링&실&재료 시험 설비 개발 (Development of Cryogenic Bearing&Seal&Material Test Facility for High Pressure Turbopump)

  • 양홍준;김선용;진형석;우관제
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.347-351
    • /
    • 2004
  • The cryogenic test facility is developed for test of deep groove ball bearings, floating ring seals, materials (steel & copper) for High Pressure Turbopump of liquid rocket engine (LRE). The cryogenic bearing test is performed to evaluate the flow rate of cooling water and the load-carrying capacity of bearings. The cryogenic seal test is performed to evaluate the determination of magnitude of leakages through the seal, a time variation of this magnitude. The test of the materials Pair is performed to evaluate its fitness for operation in the liquid oxygen medium.

  • PDF

Labyrinth Seal 내 누수량에 미치는 축 회전속도의 영향 (An Effect of Shaft Speed on the Leakage in a labyrinth Seal)

  • 이관수;이상욱;김창호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1990년도 제11회 학술강연회초록집
    • /
    • pp.73-91
    • /
    • 1990
  • Incompressible turbulent flow in a single cavity of the stepped multi-cavity labyrinth seal is numerically analyzed to investigate an effect of the shaft speed on the leakage. SIMPLER algorithm is used to solve governing equations, and low-Reynolds k-$\varepsilon$ turbulence model as outlined by Launder and Sharma is adopted to predict turbulent flow. Pressure drops for the cavity with and without the groove are evaluated for four different Reynolds numbersand three different shaft speeds.

  • PDF

Labyrinth Seal 내 누수량에 미치는 축 회전속도의 영향 (An Effect of Shaft Speed on the Leakage in a Labyrinth Seal)

  • 이관수;이상욱;김창호
    • Tribology and Lubricants
    • /
    • 제6권2호
    • /
    • pp.27-33
    • /
    • 1990
  • Incompressible turbulent flow in a single cavity of the stepped multi-cavity labyrinth seal is numerically analyzed to investigate an effect of the shaft speed on the leakage. SIMPLER algorithm is used to solve governing equations, and low-Reynolds k-$\varepsilon$ turbulence model as outlined by Launder and Sharma is adopted to predict turbulent flow. Pressure drops for the cavity with and without the groove are evaluated for four different Reynolds numbers and three different shaft speeds.

U-컵 시일의 밀봉기구에 관한 유한요소해석 (Finite Element Analysis on the Sealing Mechanism of U-Cup Seals)

  • 최준업;전인기;김희준;김청균
    • Tribology and Lubricants
    • /
    • 제10권3호
    • /
    • pp.12-17
    • /
    • 1994
  • Minimum clearance between the U-cup seal groove of a piston and a cylinder bore to ensure against extrusion of the U-cup ring and leakage of working fluids is an important design parameter for a seal designer in hydraulic cylinder applications. Therefore, typical U-cup seal of a hydraulic actuator has been analyzed as a function of a sealing gap using the nonlinear FEM software MARC. In this study, the useful design data were presented as a function of the sealing gap and the sealed hydraulic pressure.

스파이럴 그루브 드라이 가스 시일의 윤활 성능해석 - Part II: 그루브 설계 파라미터의 상세 성능평가 (Lubrication Performance Analyses of Spiral Groove Dry Gas Seals - Part II: Detailed Performance Evaluation of Groove Design Parameters)

  • 이안성;양재훈;최동훈
    • Tribology and Lubricants
    • /
    • 제20권2호
    • /
    • pp.68-76
    • /
    • 2004
  • Applying a general Galerkin FE lubrication analysis method to spiral groove dry gas seals, this study intends to analyze in detail the effects of groove design parameters, such as a spiral angle, groove width ratio, groove radius ratio, groove depth ratio, and groove taper ratio, on the lubrication performances of an opening force, leakage, axial stiffness and damping, and angular stiffness and damping at low and high rotating speeds: 3,600 and 15,000 nm. Results show that, for the primary design consideration performances such as the opening force and axial and angular stiffnesses, a spiral angle of $25^{\circ}$, a groove width ratio of 0.46, a groove radius ratio of 1.1, a groove depth ratio of 1.0, and a groove taper ratio of 0.0 are preferred. Where the recommended relatively low values of groove depth and taper ratios are to keep the axial and angular dampings positive or higher than 0 particularly at the high rotating speed.

스파이럴 그루브 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구 (A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing)

  • 강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제18권3호
    • /
    • pp.181-186
    • /
    • 2002
  • A numerical analysis is undertaken to show the influence of bearing design parameters on the load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, and the seal ratio.

스파이럴 그루브 형상의 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구 (A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing)

  • 강지훈;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.257-262
    • /
    • 2001
  • A numerical analysis is undertaken to show tile influence of bearing design parameters on tile load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, arid the seal ratio.

  • PDF

시일과 스틸면 사이에 구형 입자가 있는 미끄럼 접촉 해석 (Sliding Contact Analysis between Rubber Seal, a Spherical Particle and Steel Surface)

  • 박태조;이준혁
    • Tribology and Lubricants
    • /
    • 제28권1호
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, a three elastic body sliding contact problem is modeled to investigate more precise wear mechanisms related with the sealing surface. A 3-D finite element contact model, a small spherical elastic particle, PTFE seal and steel surface, is solved using a nonlinear finite element code MARC. The deformed seal and steel surface shapes, von-Mises and principal stress distributions are obtained for different seal sliding distances. The entrapped small particle within PTFE seal results in very high stresses on the steel surface which exceeded its yield strength and produce plastic deformation such as groove and torus. The sealing surface could also be worn down by sub-surface fatigue due to intervening small particles together with the well-known abrasive wear. Therefore the proposed contact model adopted in this paper can be applied in design of various sealing systems, and further studies are required.

스파이럴 그루브 드라이 가스 시일의 윤활 성능해석 - Part I: 유한요소 해석 및 기본 성능평가 (Lubrication Performance Analyses of Spiral Groove Dry Gas Seals - Part I: EE Analysis and Basic Performance Evaluation)

  • 이안성;양재훈;최동훈
    • Tribology and Lubricants
    • /
    • 제20권2호
    • /
    • pp.58-67
    • /
    • 2004
  • In this study a general Galerkin FE lubrication analysis method for the compressible Reynolds equation in cylindrical coordinates is presented. Then, the method is applied for analyzing lubrication performances of spiral groove dry gas seals. The effects of toning and number of groove on performance indices are evaluated at low and high rotating speeds: 3,600 and 15,000 rpm. Results show that, for the primary design consideration performances such as the opening force and axial and angular stiffnesses, a negative or small coning and a large number of groove are preferred.

On the Sealing Characteristics Analysis and Design of Bi-Polymer O-ring Seals

  • Kim, Chung Kyun;Ko, Young Bae;Cho, Seung Hyun
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.40-45
    • /
    • 2001
  • The paper deals with a non-linear finite element analysis of the thermomechanical distortions of an elastomeric O-ring seal including a temperature gradient. Axial compression of O-ring seals, as well as the influence of the temperature gradients and various O-ring seal models, are investigated based on the axisymmetric analysis. The highest temperature occurs near the interface of the O-ring between the dovetail groove bottom and the O-ring seal. The calculated FEM results indicate that the composite O-ring with the diametral ratio, 0.8 shows very stable and recommendable compared with other seal models far elevated temperatures and corrosive environments.

  • PDF