• 제목/요약/키워드: Seakeeping behavior

검색결과 4건 처리시간 0.015초

Effects of hull form parameters on seakeeping for YTU gulet series with cruiser stern

  • Cakici, Ferdi;Aydin, Muhsin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.700-714
    • /
    • 2014
  • This study aims to identify the relations between seakeeping characteristics and hull form parameters for YTU Gulet series with cruiser stern. Seakeeping analyses are carried out by means of a computer software which is based on the strip theory and statistical short term response prediction method. Multiple regression analysis is used for numerical assessment through a computer software. RMS heave-pitch motions and absolute vertical accelerations on passenger saloon for Sea State 3 at head waves are investigated for this purpose. It is well known that while ship weight and the ratios of main dimensions are the primary factors on ship motions, other hull form parameters ($C_P$, $C_{WP}$, $C_{VP}$, etc.) are the secondary factors. In this study, to have an idea of geometric properties on ship motions of gulets three different regression models are developed. The obtained outcomes provide practical predictions of seakeeping behavior of gulets with a high level of accuracy that would be useful during the concept design stage.

Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

  • Kim, Dong Jin;Kim, Sun Young;You, Young Jun;Rhee, Key Pyo;Kim, Seong Hwan;Kim, Yeon Gyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.161-177
    • /
    • 2013
  • High-speed vessels require good resistance and seakeeping performance for safe operations in rough seas. The resistance and seakeeping performance of high-speed vessels varies significantly depending on their hull forms. In this study, three planing hulls that have almost the same displacement and principal dimension are designed and the hydrodynamic characteristics of those hulls are estimated by high-speed model tests. All model ships are deep-V type planing hulls. The bows of no.2 and no.3 model ships are designed to be advantageous for wave-piercing in rough water. No.2 and no.3 model ships have concave and straight forebody cross-sections, respectively. And length-to-beam ratios of no.2 and no.3 models are larger than that of no.1 model. In calm water tests, running attitude and resistance of model ships are measured at various speeds. And motion tests in regular waves are performed to measure the heave and pitch motion responses of the model ships. The required power of no.1 (VPS) model is smallest, but its vertical motion amplitudes in waves are the largest. No.2 (VWC) model shows the smallest motion amplitudes in waves, but needs the greatest power at high speed. The resistance and seakeeping performance of no.3 (VWS) model ship are the middle of three model ships, respectively. And in regular waves, no.1 model ship experiences 'fly over' phenomena around its resonant frequency. Vertical accelerations at specific locations such as F.P., center of gravity of model ships are measured at their resonant frequency. It is necessary to measure accelerations by accelerometers or other devices in model tests for the accurate prediction of vertical accelerations in real ships.

Nonlinear effects on motions and loads using an iterative time-frequency solver

  • Bruzzone, Dario;Gironi, C.;Grasso, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.20-26
    • /
    • 2011
  • A weakly nonlinear seakeeping methodology for predicting motions and loads is presented in this paper. This methodology assumes linear radiation and diffraction forces, calculated in the frequency domain, and fully nonlinear Froude-Krylov and hydrostatic forces, evaluated in the time domain. The particular approach employed here allows to overcome numerical problems connected to the determination of the impulse response functions. The procedure is divided into three consecutive steps: evaluation of dynamic sinkage and trim in calm water that can significantly influence the final results, a linear seakeeping analysis in the frequency domain and a weakly nonlinear simulation. The first two steps are performed employing a three-dimensional Rankine panel method. Nonlinear Froude-Krylov and hydrostatic forces are computed in the time domain by pressure integration on the actual wetted surface at each time step. Although nonlinear forces are evaluated into the time domain, the equations of motion are solved in the frequency domain iteratively passing from the frequency to the time domain until convergence. The containership S175 is employed as a test case for evaluating the capability of this methodology to correctly predict the nonlinear behavior related to wave induced motions and loads in head seas; numerical results are compared with experimental data provided in literature.

모형시험을 통한 플로팅 도크게이트 운동성능 평가 (Model Test and Numerical Simulation of the Behaviour of Dock-Gate in Waves)

  • 신현경;김민성;노철민;양승호;조진욱;김종욱;김삼룡;양영철;김봉민
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.611-619
    • /
    • 2008
  • In most shipyards Floating Dock-gate System is adapted for dry docks. For the safe launching of ships in dry docks, smooth operation of dock-gate must be guaranteed. So it is very important to grasp its behavior in waves for securing the high productivity and the safety of workers. Its seakeeping ability was estimated numerically at the floating conditions and the free roll decay and the seakeeping model tests of dock-gate was carried out with bilge-keels of 3 different widths which have a scale of 1 to 20. More than 20% decrease of roll motion was observed in irregular beam seas by applying a bilge-keel system to the dock-gate that is long and narrow.