• Title/Summary/Keyword: Seagrass

Search Result 113, Processing Time 0.019 seconds

Estimating Spatial and Vertical Distribution of Seagrass Habitats Using Hydroacoustic System (수중음향을 이용한 해초 서식처(Seagrass Habitats)의 공간 및 수직 분포 추정)

  • Kang, Don-Hyung;Cho, Sung-Ho;La, Hyoung-Sul;Kim, Jong-Man;Na, Jung-Yul;Myoung, Jung-Goo
    • Ocean and Polar Research
    • /
    • v.28 no.3
    • /
    • pp.225-236
    • /
    • 2006
  • Seagrass meadows are considered as critical habitats for a wide variety of marine organisms in coastal and estuarine ecosystems. In many cases, studies on the spatial/temporal distribution of seagrass have depended on direct observations using SCUBA diving. As an alternative method fur studying seagrass distribution, an application of hydroacoustic technique has been assessed for mapping seagrass distribution in Dongdae Bay, on the south coast of Korea, in September 2005. Data were collected using high frequency transducer (420 kHz split-beam), which was installed with towed body system. The system was linked to DGPS to make goo-referenced data. Additionally, in situ seagrass distribution has been observed using underwater cameras and SCUBA diving at four stations in order to compare with acoustic data. Acoustic survey was conducted along 23 transects with 3-4 blot ship speed. Seagrass beds were vertically limited to depths less than 3.5m and seagrass height ranged between 55 and 90cm at the study sites. Dense seagmss beds were mainly found at the entrance of the bay and at a flat area around the center of the bay. Although the study area was a relatively small, the vertical and spatial distributions of the seagrass were highly variable with bathymetry and region. Considering dominant species, Zostera marina L., preliminary estimation of seagrass biomass with acoustic and direct sampling data was approximately $56.55g/m^2$, and total biomass of 104 tones (coefficient variation: 25.77%) was estimated at the study area. Hydroacoustic method provided valuable information to understand distribution pattern and to estimate seagrass biomass.

Distribution of Seagrass (Zostera marina) Beds and High Frequency Backscattering Characteristics by Photosynthesis (잘피 서식지의 분포와 광합성에 의한 고주파 후방산란 특성)

  • Yoon Kwan-Seob;La Hyoung Sul;Na Jungyul;Lee Jae-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.562-569
    • /
    • 2004
  • An experiment for observation of the distribution of the seagrass (zostera marina) beds and characteristics of high-frequency backscattering by the photosynthesis was conducted off the coast. Acoustic data were taken as a function of the grazing angles and the relative azimuth angles on the seagrass beds of which bottom type was sandy-mud. The transmitted source signal was a 120 kHz CW waveform. Mapping of the seagrass beds distribution was drawn up using the seagrass backscattering strength with azimuth and grazing angles. The result of the comparison backscattering strength distribution of the seagrass beds was shown to be the similar to the photograph of real seagrass beds. The seagrass backscattering strength was also compared between day and night to verify the effects of the acoustical scattering by the bubbles of Photosynthetic oxygen formed on the seagrass. In these results. it is clear that observation of the seagrass beds between day and night showed the different characteristics because the bubbles of Photosynthetic oxygen affect the acoustical scattering.

Seagrass Distribution in Deukryang Bay (득량만에 자생하는 잘피의 분포 현황)

  • Kim, Jeong-Bae;Park, Jung-Im;Lee, Kun-Seop
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.509-517
    • /
    • 2009
  • Seagrass meadows are important biogenic habitats for a wide variety of marine animals and plants, a source of organic carbon for commercially important animals, and act as a nutrient filter in estuarine and coastal ecosystems. As such, mapping the distribution of seagrass beds provides us with an important component of management and conservation strategies. To survey seagrass distribution within Deukryang Bay, we directly observed seagrass beds using SCUBA in Boseong-gun, Goheung-gun, and Jangheung-gun. Seagrass distribution in Geogeum and Gumdang islands were not observed. Specifically, we monitored the distribution area, species composition, morphology, density, and biomass of seagrass meadows. Seagarss beds were mapped for Daikum-ri coast, Deukryang island, Yongjeong-ri coast, Samsan-ri coast and Ongam-ri coast. Total seagrass coverage in Deukryang Bay was $5.1\;km^2$, $4.8\;km^2$ of which was Zostera marina, $0.3\;km^2$ Z. caulescence and $0.01\;km^2$ Z. japonica. Z. japonica was found in intertidal zones, Z. marina was found from the intertidal to subtidal zones of 2 m MSL (mean sea level) depth, and Z. caulescence was found in subtidal zones of 2.5-5 m MSL.

Water Flow Estimation using Roughness Coefficient in a Seagrass (Zostera marina L.) Bed (조도계수를 이용한 거머리말 해초지의 조석류에 대한 수치실험)

  • Oh, Tae-Gun;Kim, Chang-Gil;Kim, Jeong-Bae;Lee, Sang-Yong
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • Spatial distribution of water flow generated by tidal current was investigated within a Zostera marina(seagrass) bed in Wonpo Bay. Water flow and elevation were observed during the seagrass growing season. The spatial distribution of water flow was numerically estimated using roughness coefficient. Water flow inside the seagrass meadow was compared with the observed values. Velocity in Zostera marina vegetated areas was approximately $25{\sim}84%$ lower than that of unvegetated areas. However, flow direction was the same. Intensity of the flood tide diminished appreciably within the seagrass bed, while its pattern was also affected. It is therefore concluded that water flow is influenced by Zostera marina meadows.

Characterization of macroalgal epiphytes on Thalassia testudinum and Syringodium filiforme seagrass in Tampa Bay, Florida

  • Won, Boo-Yeon;Yates, Kim K.;Fredericq, Suzanne;Cho, Tae-Oh
    • ALGAE
    • /
    • v.25 no.3
    • /
    • pp.141-153
    • /
    • 2010
  • Seagrass epiphyte blooms potentially have important economic and ecological consequences in Tampa Bay, one of the Gulf of Mexico's largest estuaries. As part of a Tampa Bay pilot study to monitor the impact of environmental stresses, precise characterization of epiphyte diversity is required for efficient management of affected resources. Thus, epiphyte diversity may be used as a rational basis for assessment of ecosystem health. In May 2001, epiphytic species encompassing green, brown and red macroalgae were manually collected from dense and sparse seagrass beds of Thalassia testudinum and Syringodium filiforme. A total of 20 macroalgal epiphytes, 2 Chlorophyta, 2 Phaeophyta, and 16 Rhodophyta, were found on T. testudinum and S. filiforme seagrass at the four sampling sites (Bishop Harbor, Cockroach Bay, Feather Sound, and Mariposa Key). The Rhodophyta, represented by 16 species, dominated the numbers of species. Among them, the thin-crusted Hydrolithon farinosum was the most commonly found epiphyte on seagrass leaves. Species number, as well as species frequency of epiphytes, is higher at dense seagrass sites than sparse seagrass sites. Four attachment patterns of epiphytes can be classified according to cortex and rhizoid development: 1) creeping, 2) erect, 3) creeping & erect, and 4) erect & holding. The creeping type is characterized by an encrusting thallus without a rhizoid or holdfast base. Characteristics of the erect type include a filamentous thallus with or without a cortex, and a rhizoid or holdfast base. The creeping and erect type is characterized by a filamentous thallus with a cortex and rhizoid. A filamentous thallus with a cortex, holdfast base, and host holding branch is characteristics of the erect and holdfast attachment type. This study characterized each species found on the seagrass for epiphyte identification.

The benefit of one cannot replace the other: seagrass and mangrove ecosystems at Santa Fe, Bantayan Island

  • Mendoza, Ayana Rose R.;Patalinghug, Jenny Marie R.;Divinagracia, Joshua Ybanez
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.183-190
    • /
    • 2019
  • Background: In the Philippines, the practice of planting mangroves over seagrass has been a practice done to promote coastline protection from damages done by storms. Despite the added protection to the coastline, the addition of an artificial ecosystem gradually inflicts damage to the ecosystem already established. In this study, seagrass communities that had no history of mangrove planting were compared with those that had mangrove planting. The percent substrate cover of seagrass in the sampling areas was determined, and the macroinvertebrates present in the sampling areas were also observed. The study was conducted based on reports of mangrove planting activity that disrupted seagrass functions on Santa Fe, Bantayan Island, Cebu. Transect-quadrat method sampling was done to assess the chosen sites. Results: Six species of seagrass was found on the site without mangrove planting which was barangay Ocoy (Cymodocea sp., Thalassia sp., Halodule sp., Enhalus sp., Halophila sp., and Syringodium sp.) and had a higher percent cover, while only four were found on the site with mangrove planting (barangay Marikaban). It was also found that barangay Marikaban had a lesser Shannon-Wiener and Simpson's index compared to barangay Ocoy. Jaccard's index of similarity between the two sites was low. Conclusion: With the results of the assessment, we recommend proper monitoring of future mangrove planting activities and that these activities should not disrupt another ecosystem as all ecosystems are important.

Meiobenthic Community Structures on the Sediment of Seagrass Bed and Mangrove Forest in Chunk Lagoon, Micronesia (마이크로네시아 연방 축 라군의 해초지와 맹그로브 군락 퇴적물에 서식하는 중형저서동물 군집 특성)

  • Min, Won-Gi;Kim, Dong-Sung;Kwon, Moon-Sang
    • Ocean and Polar Research
    • /
    • v.28 no.1
    • /
    • pp.13-23
    • /
    • 2006
  • This study was conducted to investigate the community structure and distributional pattern of meiobenthos on the sediment of the mangrove forest and seagrass bed in the Chuuk lagoon. The samples were collected by an acryl corer at 14 stations. Nematodes were the most abundant meiobenthos, followed by ciliophorans and polychaetes; these taxa comprised more than 70% of the total abundance at all stations. The meiofuuna sampled in seagrass bed were more diverse than those of mangrove substrates. Total densities were higher in mangrove stations than other sites, averaging 1,671 to $2,967inds/10cm^2$. Densities in seagrass area ranged between 605 and $1,053inds/10cm^2$. Biomasses, however, were higher in seagrass bed $(975-2,167{\mu}g\;free\;dry\;weight/10cm^2)$ than in mangrove area $(1,064-1,180{\mu}g\;free\;dry\;weight/10cm^2)$. Ordination chart by MDS of major meiofaunal density in each station showed difference between mangrove area and seagrass area in terms of habitat of meiobenthos.

Comparison of Meiobenthic Faunal Communities in Seagrass Bed and Adjacent Bare Sediment (해초지와 주변 퇴적물에 서식하는 중형저서동물 군집 특성 비교)

  • 민원기;김동성;최청일
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 2003
  • To investigate the community structure and meiofaunal density in seagrass/bare non-seagrass beds, a survey was conducted at three seagrass bed locations in Doomoojin of Baegryongdo, inner harbor of Eocheongdo in May 1999, and Yulim of Dolsando for every month from February to July 1999. Meiobenthic samples were collected from sediments within seagrass beds (SB) and non-seagrass bed (or adjacent to barren sand area, NSB). Nematodes were the most dominant group among representative 13 meiofaunal groups. The sub-dominant groups were benthic for-aminiferans, benthic harpacticoids, and annelids. The highest density of meiofauna was recorded at a seagrass bed of Yulim (7,244 ind/10 $\textrm{cm}^2$ in June), and lowest density was recorded at a non-seauass bed of Baegryoungdo (438 ind/ 10 $\textrm{cm}^2$ in May). For vertical distribution, the highest density of meiofauna was recorded at 0-2 cm depth, and the density abruptly decreased with depth in all stations. The density of meiofauna in size between 0.125 m and 0.25 mm was maximum. Sediment types for the study areas ranged from sandy to sandy mud by the Folk's classification. The density of total meiofauna, the number of taxa, and the density of the dominant groups (nematodes, benthic for-aminiferans, benthic harpacticoids, annelids) between SB and NSB were significantly different. The results clearly showed the importance of seagrass bed as suitable habitat for meiofauna.

Spatial Distribution and Ecological Characteristics of Zostera marina and Zostera japonica in the Seomjin Estuary (섬진강 하구에 자생하는 잘피의 분포 현황 및 생태적 특성)

  • Kim, Jeong-Bae;Park, Jung-Im;Choi, Woo-Jeung;Lee, Jae-Seong;Lee, Kun-Seop
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.351-361
    • /
    • 2010
  • Among common estuarine submerged plants, seagrasses are the most extensively studied due to their ecological importance in estuarine ecosystems. Seagrass meadows are important biological habitats for a wide variety of marine animals and plants. They are a source of organic carbon for commercially important animals. Furthermore, seagrasses act as nutrient filters in estuarine and coastal marine ecosystems. As such, mapping the distribution of seagrass beds is important for management and conservation strategies. In order to survey the seagrass distribution within the Seomjin Estuary, We directly observed seagrass beds in Kwangyang and Hadong using SCUBA. The distribution area, species composition, morphology, density, biomass and productivity of seagrass meadows were examined. Seagrass meadows were distributed in the intertidal and subtidal zones of the Galsa tidal flats, and in the subtidal zone of the neighboring POSCO area. Patches of Zostera japonica was found at patches at the Galsa tidal flats intermediate point. The total estimated seagrass distribution area of the Seomjin Estuary was $1.84\;km^2$. Of the total, $1.83\;km^2$ was Zostera marina (eelgrass) and $0.01\;km^2$ was Zostera japonica (dwarf eelgrass). Zostera japonica was found in intertidal zones. Zostera marina was found from the intertidal to subtidal zones at a 2 m mean sea level (MSL) depth. The leaf productivity of Zostera marina was $4.47g\;DW\;m^{-2}\;day^{-1}$. The annual production of eelgrass was $1,632\;g\;DW\;m^{-2}\;yr^{-1}$, which corresponds to $731g\;C\;m^{-2}\;yr^{-1}$. The total production of eelgrass was $3,002\;tons\;DW\;yr^{-1}$, which corresponds to $1,343\;tons\;C\;yr^{-1}$.

Production Assessment of Eelgrass, Zostera marina Using the Plastochrone Method Compared with the Conventional Leaf Marking Technique

  • Lee, Kun-Seop
    • Journal of the korean society of oceanography
    • /
    • v.39 no.3
    • /
    • pp.186-196
    • /
    • 2004
  • Since seagrasses are highly productive and provide a source of organic carbon for a wide variety of marine organisms in coastal and estuarine ecosystem, accurate assessment of seagrass production is critical to understand the functions and values of seagrasses in these ecosystems. Zieman's leaf marking technique has been mostly used to estimate seagrass leaf production rates. However, inherent problems on the traditional leaf marking technique have been discussed by the several researchers, and these problems can cause underestimation of seagrass production. To develop an accurate and reliable assessing method for seagrass production, production rates of eelgrass, Zostera marina in three bay systems on the south coast of the Korean peninsula were estimated using the conventional leaf marking technique and the plastochrone method. The plastochrone method has been recently suggested as an effective method for reliable assessments of seagrass production. In the present study, leaf production rates estimated by the plastochrone method were significantly higher than the rates derived from the traditional leaf marking technique. Annual eelgrass leaf production assessed using the leaf marking technique was about 65 to 89% of the estimated production using the plastochrone method. The differences in annual productions between assessment techniques imply that the conventional leaf marking technique significantly underestimated eelgrass leaf production. Total eelgrass productions estimated using the plastochrone method in the present study sites were about 600 to 806 g DW $m^{-2} y^{-l}$, and below-ground production accounted for about 20 to 23% of the total production. The plastochrone method was suggested to be an effective and accurate assessing method for eelgrass production.