Browse > Article
http://dx.doi.org/10.4490/algae.2010.25.3.141

Characterization of macroalgal epiphytes on Thalassia testudinum and Syringodium filiforme seagrass in Tampa Bay, Florida  

Won, Boo-Yeon (Department of Marine Life Science, Chosun University)
Yates, Kim K. (U.S. Geological Survey)
Fredericq, Suzanne (Department of Biology, University of Louisiana at Lafayette)
Cho, Tae-Oh (Department of Marine Life Science, Chosun University)
Publication Information
ALGAE / v.25, no.3, 2010 , pp. 141-153 More about this Journal
Abstract
Seagrass epiphyte blooms potentially have important economic and ecological consequences in Tampa Bay, one of the Gulf of Mexico's largest estuaries. As part of a Tampa Bay pilot study to monitor the impact of environmental stresses, precise characterization of epiphyte diversity is required for efficient management of affected resources. Thus, epiphyte diversity may be used as a rational basis for assessment of ecosystem health. In May 2001, epiphytic species encompassing green, brown and red macroalgae were manually collected from dense and sparse seagrass beds of Thalassia testudinum and Syringodium filiforme. A total of 20 macroalgal epiphytes, 2 Chlorophyta, 2 Phaeophyta, and 16 Rhodophyta, were found on T. testudinum and S. filiforme seagrass at the four sampling sites (Bishop Harbor, Cockroach Bay, Feather Sound, and Mariposa Key). The Rhodophyta, represented by 16 species, dominated the numbers of species. Among them, the thin-crusted Hydrolithon farinosum was the most commonly found epiphyte on seagrass leaves. Species number, as well as species frequency of epiphytes, is higher at dense seagrass sites than sparse seagrass sites. Four attachment patterns of epiphytes can be classified according to cortex and rhizoid development: 1) creeping, 2) erect, 3) creeping & erect, and 4) erect & holding. The creeping type is characterized by an encrusting thallus without a rhizoid or holdfast base. Characteristics of the erect type include a filamentous thallus with or without a cortex, and a rhizoid or holdfast base. The creeping and erect type is characterized by a filamentous thallus with a cortex and rhizoid. A filamentous thallus with a cortex, holdfast base, and host holding branch is characteristics of the erect and holdfast attachment type. This study characterized each species found on the seagrass for epiphyte identification.
Keywords
epiphytes; Florida; seagrass; Syringodium filiforme; Tampa Bay; taxonomy; Thalassia testudinum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Turner, D. 1808-1809. Fuci sive plantarum fucorum generi a botanicis ascriptarum icones descriptiones et historia. Fuci, or coloured figures and descriptions of the plants referrred by botanists to the genus Fucus, vol. 2. Typis J. M’Creery, impensis J. et A. Arch, London, 164 pp.
2 Virnstein, R. W. & Cairns, K. D. 1986. Seagrass maps of the Indian River Lagoon: final report to DER, September 1986. Seagrass Ecosystems Analysts, Vero Beach, 27 pp.
3 Won, B. Y., Cho, T. O. & Fredericq, S. 2009. Morphological and molecular characterization of species of the genus Centroceras (Ceramiaceae, Ceramiales), including two new species. J. Phycol. 45:227-250.   DOI
4 Wulfen, F. X. 1803. Cryptogama aquatica. Arch. Bot. 3:1-64.
5 Wynne, M. J. 1985. Concerning the names Scagelia corallina and Heterosiphonia wurdmannii (Ceramiales, Rhodophyta). Cryptogam. Algol. 6:81-90.
6 Zanardini, G. 1839. Sulle alghe. Lettera alla Direzione della Biblioteca Italiana. Bibl. Ital. 96:195-229.
7 Kutzing, F. T. 1847. Diagnosen und Bemerkungen zu neuen oder kritischen Algen. Bot. Zeit. 5:1-5, 22-25, 33-38, 52-55, 164-167, 177-180, 193-198, 219-223.
8 Kutzing, F. T. 1849. Species algarum. F. A. Brockhaus, Leipzig, 922 p.
9 Lamouroux, J. V. F. 1813. Essai sur les genres de la famille des thalassiophytes non articulees. Ann. Mus. Hist. Natl. Paris 20:21-47, 115-139, 267-293.
10 Lamouroux, J. V. F. 1816. Histoire des polypiers coralligenes flexibles, vulgairement nommes zoophytes. De l’imprimerie de F. Poisson, Caen, 560 pp.
11 Land, L. S. 1970. Carbonate mud: production by epibiont growth on Thalassia testudinum. J. Sediment. Petrol. 40:1361-1363.   DOI
12 Leliaert, F., Vanreusel, W., De Clerck, O. & Coppejans, E. 2001. Epiphytes on the seagrasses of Zanzibar Island (Tanzania), floristic and ecological aspects. Belg. J. Bot. 134:3-20.
13 Littler, D. S. & Littler, M. M. 2000. Caribbean reef plants. An identification guide to the reef plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Offshore Graphics, Washington, 542 pp.
14 Montagne, J. F. C. 1841. Plantae cellulares. In Barker-Webb, P. & Berthelot, S. (Eds.) Histoire Naturelle des Iles Canaries, vol. 3. Bethune, Paris, pp. 161-208.
15 Penrose, D. & Chamberlain, Y. M. 1993. Hydrolithon farinosum (Lamouroux) comb. nov.: implications for generic concepts in the Mastophoroideae (Corallinaceae, Rhodophyta). Phycologia 32:295-303.   DOI
16 Roth, A. W. 1797. Catalecta botanica quibus plantae novae et minus cognitae describuntur atque illustrantur. Fasc. 1. In Bibliopolo I. G. Mulleriano, Leipzig, 244 pp.
17 Silva, P. C., Menez, E. G. & Moe, R. L. 1987. Catalog of the benthic marine algae of the Philippines. Smithsonian Contrib. Mar. Sci. 27:1-179.   DOI
18 Hemminga, M. A. & Duarte, C. M. 2000. Seagrass ecology. Cambridge University Press, Cambridge, 310 pp.
19 Harvey, W. H. 1853. Nereis boreali-americana; or, contributions towards a history of the marine algae of the Atlantic and Pacific coasts of North America. Part II. Rhodospermeae. Smithsonian Contrib. Knowledge 5:1-258.
20 Heijs, F. M. L. 1984. Annual biomass and production of epiphytes in three monospecific seagrass communities of Thalassia hemprichii (Ehrenb.) Aschers. Aquat. Bot. 20:195-218.   DOI
21 Hollenberg, G. J. 1942. An account of the species of Polysiphonia on the Pacific coast of North America. I. Oligosiphonia. Am. J. Bot. 29:772-785.   DOI
22 Hooker, W. J. 1833. Div. I. Inarticulatae. In Hooker, W. J. (Ed.) The English Flora of Sir James Edward Smith. Class XXIV. Cryptogamia. Vol. V. (or Vol. II of Dr. Hooker’s British flora). Part I. Comprising the Mosses, Hepaticae, Lichens, Characeae and Algae. Longman, Rees, Orme, Brown, Green & Longman, London, pp. 250-259, 264-322.
23 Howe, M. A. 1920. Algae. In Britton, N. L. & Millspaugh, C. F. (Eds.) The Bahama Flora. The Authors, New York, pp. 553-618.
24 Humm, H. J. 1964. Epiphytes of the seagrass, Thalassia testudinum, in Florida. Bull. Mar. Sci. Gulf Caribb. 14:306-341.
25 Jacquin, N. J. 1791. Collectanea ad botanicam, chemiam, et historiam naturalem spectantia, cum figuris, vol. 3. Officina Wappleriana, Vindobonae, 306 pp.
26 Koch, E. W. 1999. Sediment resuspension in a shallow Thalassia testudinum banks ex Konig bed. Aquat. Bot. 65:269-280.   DOI
27 Kutzing, F. T. 1843. Phycologia generalis oder Anatomie, Physiologie und Systemkunde der Tange: Bearb. von Friedrich Traugott Kutzing. Mit 80 farbig gedruckten Tafeln, gezeichnet und gravirt vom Verfasser. F. A. Brockhaus, Leipzig, 458 pp.
28 Ballantine, D. & Humm, H. J. 1975. Benthic algae of the Anclote estuary I. Epiphytes of seagrass leaves. Fla. Sci. 38:150-162.
29 Almasi, M. N., Hoskin, C. M., Reed, J. K. & Milo, J. 1987. Effects of natural and artificial Thalassia on rates of sedimentation. J. Sediment. Petrol. 57:901-906.
30 Ambronn, H. 1880. Ueber einige Falle von Bilateralitat bei den Florideen. Botanische Zeitung 38:161-174, 177-185, 193-200, 209-216, 225-233.
31 Cho, T. O., Boo, S. M., Hommersand, M. H., Maggs, C. A., McIvor, L. & Fredericq, S. 2008. Gayliella gen. nov. in the tribe Ceramieae (Ceramiaceae, Rhodophyta) based on molecular and morphological evidence. J. Phycol. 44:721-738.   DOI   ScienceOn
32 Dawes, C. J. 1987. The dynamic seagrasses of the Gulf of Mexico and Florida coasts. Fla. Marine Research Publ. No. 42. In Durako, M. J., Phillips, R. C. & Lewis, R. R. III (Eds.) Proc. of Symp. on Subtropical Seagrasses of the S.E. U. S., Aug 12 1985. Florida Department of Natural Resources, Bureau of Marine Research, St. Petersburg, FL.
33 Dawes, C. J., Hall, M. O. & Riechert, R. K. 1985. Seasonal biomass and energy content in seagrass communities on the West Coast of Florida. J. Coast. Res. 1:255-262.
34 Dawes, C. J., Hanisak, D. & Kenworthy, W. J. 1995. Seagrass biodiversity in the Indian River Lagoon. Bull. Mar. Sci. 57:59-66.
35 Drew, K. M. 1956. Conferva ceramicola Lyngbye. Bot. Tidsskr. 53:67-74.
36 Eiseman, N. J. 1980. An illustrated guide to the sea grasses of the Indian River region of Florida. Technical Report No. 31. Harbor Branch Foundation Inc, Fort Pierce, 24 pp.
37 Harvey, W. H. 1852. Nereis boreali-Americana. Part I. Melanospermeae. Smithsonian Contrib. Knowledge 3:1-150.
38 Agardh, C. A. 1828. Species algarum cognitae, cum synonymis, differentiis specificis et descriptionibus succinctis, vol. 2, part 1. Ernst Martitius, Greifswald, 189 pp.
39 Agardh, C. A. 1822. Algae. In Kunth, C. S. (Ed.) Synopsis Plantarum, Quas, in Itinere ad Plagam Aequinoctialem Orbis Novi, Collegerunt Al. de Humboldt et Am. Bonpland. Levrault, Paris, pp. 1-16.
40 Agardh, C. A. 1824. Systema algarum. Berling, Lund, 312 pp.
41 Agardh, J. G. 1883. Till algernes systematik. Nya bidrag. (Tredje afdelningen.). Lunds Universitets Ars-Skrift, Afdelningen for Mathematik och Naturvetenskap 19:1-177.