• 제목/요약/키워드: Seabed Soil

검색결과 103건 처리시간 0.024초

임의반사율의 부분중복파동장에서 유한두께를 갖는 해저지반 내 지반응답의 해석법 (Analytical Method of Partial Standing Wave-Induced Seabed Response in Finite Soil Thickness under Arbitrary Reflection)

  • 이광호;김도삼;김규한;김동욱;신범식
    • 한국해안·해양공학회논문집
    • /
    • 제26권5호
    • /
    • pp.300-313
    • /
    • 2014
  • 파-지반의 상호작용 해석에 지금까지는 대부분 무한두께를 갖는 해저지반 상의 진행파와 무한두께 혹은 유한두께의 해저지반 상에서 완전중복파에 대해서만 해석해가 제안되어 있다. 본 연구에서는 임의반사율의 부분중복파동장에 선형파 이론과 유한두께를 갖는 해저지반에 Biot(1941) 3차원 압밀이론 및 지반탄성론에 기초한 유효응력 개념을 각각 적용하여 지반 내 동적응답에 관한 해석해를 새롭게 유도하며, 이에 수심과 반사율만을 변화시킴으로서 기존의 해석해가 간단히 얻어지기 때문에 그의 적용성이 보다 넓다. 본 해석해의 타당성은 무한지반 상의 진행파동장 및 완전중복파동장에 대한 Yamamoto et al.(1978) 및 Tsai & Lee(1994)의 해석해와 비교 검토로부터 검증된다. 또한, 본문에서는 유한깊이를 갖는 해저지반 상의 진행파동장, 완전중복파동장 및 임의반사율의 부분중복파동장에 대해 수심과 주기의 변화에 따른 본 해석해의 변화특성을 면밀히 검토한다. 이로부터 유한깊이의 지반은 무한두께의 경우와는 매우 상이한 지반응답(간극수압, 전단응력, 수평 및 연직 유효응력)을 나타내고, 반사율의 함수인 부분중복파동장에서 지반응답은 완전중복파동장에서의 값보다 일반적으로 작은 값을 나타낸다는 것을 확인할 수 있었다.

A Case Study of Sediment Transport on Trenched Backfill Granular and Cohesive Material due to Wave and Current

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.86-98
    • /
    • 2016
  • In this study, after the installation of a subsea pipeline, backfilling was performed in the trenched area. During these operations, a stability problem in the subsea pipeline occurred. The pipeline was directly impacted by environmental loading such as waves and currents that were caused by backfill material when scouring or sediment transport and siltation was carried out. Therefore, this study reviewed whether trenching was necessary, and conducted research into an indigenous seabed property that contains granular soil. A study of cohesive soil was also conducted in order to cross-correlate after calculating the values of the critical Shields parameter relevant to elements of the external environment such as waves and current, and the shear Shields parameter that depends on the actual shearing stress. In case of 1), sedimentation or erosion does not occur. In the case of 2), partial sedimentation or erosion occurs. If the case is 3), full sedimentation or erosion occurs. Therefore, in the cases of 1) or 2), problems in structural subsea pipeline stability will not occur even if partial sedimentation or erosion occurs. This should be reflected particularly in cases with granular and cohesive soil when a reduction in shear strength occurs by cyclic currents and waves. In addition, since backfilling material does not affect the original seabed shear strength, a set-up factor should be considered to use a reduced of the shear strength in the original seabed.

Spud-can penetration depending on soil properties: Comparison between numerical simulation and physical model test

  • Han, Dong-Seop;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제7권2호
    • /
    • pp.107-120
    • /
    • 2017
  • Spud-can is used for fixing jack-up rig on seabed. It needs to be inserted up to the required depth during the installation process to secure enough soil reaction and prevent overturning accidents. On the other hand, it should be extracted from seabed soils as fast as possible during the extraction process to minimize the corresponding operational cost. To achieve such goals, spud-can may be equipped with water-jetting system including monitoring and control. To develop such a smart spud-can, a reliable numerical simulation tool is essential and it has also to be validated against physical model tests. In this regard, authors developed a numerical simulation tool by using a commercial program ANSYS with extended Drucker-Prager (EDP) formula. Authors also conducted small-scale (1/100) physical model tests for verification and calibration purpose. By using the numerical model, a systematic parametric study is conducted both for sand and K(kaolin)-clay with varying important soil parameters and the best estimated soil properties of the physical test are deduced. Then, by using the selected soil properties, the numerical and experimental results for a sand/K-clay multi-layer case are cross-checked to show reasonably good agreement. The validated numerical model will be useful in the next-stage study which includes controllable water-jetting.

해저지반-구조물 상호작용을 고려한 해상풍력발전타워의 진동특성 (A Study on the vibration characteristics of offshore wind turbine tower including seabed soil-structure interaction)

  • 이정탁;이강수;손충렬;박종빈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.416-422
    • /
    • 2009
  • Offshore wind turbine are subjected to more various loads than general land structures and the stability of structures is supported by the piles driven deeply in the subsoil. So it is more important for offshore structures to consider seabed soil-structure interaction than land structures. And the response of a fixed offshore structure supported by pile foundations is affected by resist dynamics lateral loading due to wave forces and ocean environmental loads. In this study, offshore wind tower response are calculated in the time domain using a finite element package(ANSYS 11.0). Several parameters affecting the vibration characteristics of the natural frequency and mode shape and the tower response have been investigated.

  • PDF

Lab-scale impact test to investigate the pipe-soil interaction and comparative study to evaluate structural responses

  • Ryu, Dong-Man;Lee, Chi-Seung;Choi, Kwang-Ho;Koo, Bon-Yong;Song, Joon-Kyu;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.720-738
    • /
    • 2015
  • This study examined the dynamic response of a subsea pipeline under an impact load to determine the effect of the seabed soil. A laboratory-scale soil-based pipeline impact test was carried out to investigate the pipeline deformation/strain as well as the interaction with the soil-pipeline. In addition, an impact test was simulated using the finite element technique, and the calculated strain was compared with the experimental results. During the simulation, the pipeline was described based on an elasto-plastic analysis, and the soil was modeled using the Mohr-Coulomb failure criterion. The results obtained were compared with ASME D31.8, and the differences between the analysis results and the rules were specifically investigated. Modified ASME formulae were proposed to calculate the precise structural behavior of a subsea pipeline under an impact load when considering sand- and clay-based seabed soils.

파랑으로 인한 불포화된 다층 해저지반의 거동;준해석적 방법 (Wave-Induced Response of Unsaturated and Multi-layered Seabed; A Semi-analytical Method)

  • 박종관
    • 한국지반공학회논문집
    • /
    • 제15권6호
    • /
    • pp.45-55
    • /
    • 1999
  • 파랑에 의한 불포화된 해저지반의 거동, 액상화와 전단파괴에 대한 연구이다. 불포화된 지반은 유체가 채워진 다공성 탄성체로 모델화 하였다. 유체의 흐름과 토립자의 변형은 Biot의 이론에 따른 지배방정식으로 나타내었다. 이 방정식은 준해석적 방법으로 풀어 불포화된 다층의 지반에 대하여 응력과 간극수압을 평가하였다 준해석적 방법은 기존의 해석방법과 달리 다층의 이방성 지반을 연속적으로 해석할 수 있다. 해석결과에 의하면, 지반의 포화도는 불포화된 다층의 지반에서 응력과 간극수압의 크기에 가장 큰 영향을 미치고 있는 것으로 나타났다. 또한, 해석결과를 토대로 지반의 액상화 발생과 전단파괴에 대한 검토를 실시하였으며, 그 결과 최대 전단파괴가 발생된 깊이가 최대 액상화 발생지역 보다 깊은 것으로 나타났다.

  • PDF

A Case Study of Sediment Transport on the Seabed due to Wave and Current Velocities

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권3호
    • /
    • pp.99-111
    • /
    • 2016
  • Seabed affected by scouring, sedimentation, and siltation occurrences often cause exposure, which induces risks to existing structures or crude oil or gas pipeline buried subsea. In order to prevent possible risks, more economical structure installation methodology is proposed in this study by predicting and managing the risk. Also, the seabed does not only consist of sandy material, but clayey soil is also widespread, and the effect of undrained shear strength should be considered, and by cyclic environmental load, pore water pressure will occur in the seabed, which reduces shear strength and allows particles to move easily. Based on previous research regarding sedimentation or erosion, the average value of external environmental loads should be applied; for scouring, a 100-year period of environmental conditions should be applied. Also, sedimentation and erosion are mainly categorized by the bed load and suspended load; also, they are calculated as the sum of bed load and suspended load, which can be obtained from the movement of particles caused by sedimentation or erosion.

해저지반 성질과 매설깊이 변화에 따른 해저파이프의 충돌 특성 (Impact Characteristics of Subsea Pipeline Considering Seabed Properties and Burial Depth)

  • 신문범;서영교
    • 한국해양공학회지
    • /
    • 제31권3호
    • /
    • pp.219-226
    • /
    • 2017
  • In this study, the impact characteristics of subsea pipelines that were installed in various soil types and burial depths were evaluated by a numerical method. An impact scenario replicated a dropped ship anchor that fell vertically and impacted an installed subsea pipeline. In order to calculate the impact force through terminal velocity, FLUENT, a computational fluid dynamic program and MDM (Moving Deforming Mesh) technique were applied. Next, a dynamic finite element program, ANSYS Explicit Dynamics, was used for impact analysis between the anchor and pipeline (or, subsea if they were buried). Three soil types were considered: loose sand, dense sand and soft clay by applying the Mohr-coulomb model to the seabed. The buried depth was assumed to be 0 m, 1 m and 2 m. In conclusion, a subsea pipeline was the most stable when buried in dense sand at a depth of 2 m to prevent impact damage.

고정식 자켓형 해양구조물의 지반 물성치에 따른 구조 응답에 관한 연구 (A Study on the Effect of Soil Properties on Structural Behavior of Fixed Jacket Type Offshore Structure)

  • 한상웅;이강수;장범선;최준환
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.438-447
    • /
    • 2018
  • For a fixed jacket type offshore structure directly supported by the seabed, the structural behavior of offshore structure depends on the soil properties. Soil properties affect on the stiffness of the piles and the boundary condition in the structural analysis. The structural analysis is performed using PSI (Pile-Soil Interaction) suggested in the code and design rule. PSI analysis of the jacket structure is carried out after various soil types are selected according to the soil properties like internal friction angle, undrained shear strength, unit weight and so on. Three types of soil are selected by varying strength for a clay and sand, respectively. The structural analysis of the jacket structure is performed using these soils. The results about axial and lateral reaction force and the stress and displacement on the structure are compared. As a results, the structural response is smaller as the soil becomes more stiff. In conclusion, it is confirmed that the structural response of fixed jacket type offshore platform supported by seabed is sensitive to the change of soil properties.

Estimation of Penetration Depth Using Acceleration Signal Analysis for Underwater Free Fall Cone Penetration Tester

  • Seo, Jung-min;Shin, Changjoo;Kwon, OSoon;Jang, In Sung;Kang, Hyoun;Won, Sung Gyu
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.202-207
    • /
    • 2020
  • A track-type underwater construction robot (URI-R) was developed by the Korea Institute of Ocean Science & Technology. Because URI-R uses tracks to move on the seabed, insufficient ground strength may hinder its movement. For smooth operation of URI-R on the seabed, it is important to determine the geotechnical properties of the seabed. To determine these properties, standard penetration test (SPT), cone penetration test (CPT), and sampling are used on land. However, these tests cannot be applied on the seabed due to a high cost owing to the vessel, crane, sampler, and analysis time. To overcome these problems, a free fall cone penetration tester (FFCPT) is being developed. The FFCPT is a device that acquires the geotechnical properties during impact/penetration/finish phases by free fall in water. Depth information is crucial during soil data acquisition. As the FFCPT cannot measure the penetration depth directly, it is estimated indirectly using acceleration. The estimated penetration depth was verified by results of real tests conducted on land.