• Title/Summary/Keyword: Sea water, Sediment

Search Result 400, Processing Time 0.027 seconds

Evolution of suspended sediment patterns in the East China and Yellow Seas

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Gallegosi, Sonia
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • The evolution of intricate and striking patterns of suspended sediments (SS), which are created by certain physical dynamics in the East China and Yellow Seas, has been investigated using satellite ocean color imageries and vertical profiles of particle attenuation and backscattering coefficients. The structure of these patterns can reveal a great deal about the process underlying their formation. Sea surface temperature (SST) analyzed from the Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data were used to elucidate the physical factors responsible for the evolution of suspended sediment patterns in the East China Sea. The concomitant patterns of suspended sediments were tracked from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data. The detailed examination about these patterns gave birth to the definition of the evolution of suspended sediments (SS) into four stages: (1) Youth or Infant stage, (2) Younger stage, (3) Mature stage, and (4) Old stage. We describe about the three directional forces of the tidal currents, ocean warm currents and estuarine circulations that lead to occurrence of various stages of the evolution of suspended sediments that increase turbidity at high levels through out the water column of the inner and outer shelf areas during September to April. The occurrence of these four stages could be repeatedly observed. In contrast, vertical profiles of the particle attenuation ($c_{p}$) and backscattering ($b_{bp}$) coefficients displayed obvious patterns of the propagation of suspended sediment plume from the southwestern coastal sea that leads to eventual collision with the massive sediment plume originating from the Yangtze banks of the East China Sea.

A Shear Strength Characteristics in Deep-sea Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 전단강도 특성)

  • 지상범;강정극;김기현;박정기;손승규;고영탁
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.255-267
    • /
    • 2004
  • Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were analyzed for shear strength properties to understand sedimentological process. The pelagic red clay from northern part of study area shows low average shear strength(4.4 kPa), while the siliceous sediment from middle area shows high(6.3 kPa). The calcareous sediment from southern area shows very low average shear strength(3.4 kPa), and transitional sediment between middle and southern area shows intermediate value(3.8 kPa) between siliceous and calcareous sediment. The depth profiles of average shear strength of pelagicred clay show gradual increment with depth due to decrease of water content with depth by general consolidation process. On the other, abrupt increment of average shear strength with depth in siliceous sediment is related to sedimentary hiatus. The very low shear strength in calcareous sediment is linked to very high sedimentation rate ofsouthern area compared with other study area.

Removal of Cochlodinium polykrikoides using the Dredged Sediment from a Coastal Fishery (연안어장 준설퇴적물을 이용한 Cochlodinium polykrikoides 제거)

  • Sun, Young-Chul;Kim, Myoung-Jin;Song, Young-Chae;Ko, Seong-Jeong;Hwang, Eung-Ju;Jo, Q-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • In the present study, experiments have been performed to investigate the possibility of removing Cochlodinium polykrikoides using the dredged sediment from a coastal fishery and then to derive the optimal conditions; the amount and particle size of dredged sediment besprinkled into water, the thermal treatment, the types and amounts of additives, and the depth profile of Cochlodinium polykrikoides. Results showed that the optimal amount of dredged sediment besprinkled into water was 6~10 g/L, and the removal efficiency of Cochlodinium polykrikoides after the reaction time for 60 min was 73~93%. Note that, in the real sea water, it is necessary to besprinkle 6~10 $kg/m^3$ of dry dredged sediment on a unit area (1 $m^2$). With decreasing particle size, Cochlodinium polykrikoides could be more efficiently removed. The removal efficiency was 93% with the dredged sediment smaller than 100 ${\mu}m$, whereas it was 51% with that of 100 ${\mu}m$ ${\mu}m$. Since most of dredged sediment (over 90%) was smaller than 100 ${\mu}m$, high efficiency could be obtained by besprinkling only the dredged sediment without pre-treatment. CaO was found to be an effective additive in promoting the removal efficiency (up to 99%). The optimal amount of additive was 5~10%, however, it was necessary to use as small amount of an additive as possible in order to avoid the sharp increase in pH. The removal efficiency increased with increasing depth profile of Cochlodinium polykrikoides. The removal efficiency was 83% at 5 cm depth, whereas it was 93% at 50 cm depth. In the sea water, red tide occurred within 3 m depth, and furthermore most Cochlodinium polykrikoides existed within 1 m depth. It was, therefore, expected that higher removal efficiency of Cochlodinium polykrikoides could be obtained when the dredged sediment was besprinkled into the sea water. The removal efficiency of Cochlodinium polykrikoides was up to 93% when the dredged sediment (<100 ${\mu}m$) was besprinkled into water at the ratio of 10 g/L. This result was comparable to that obtained with loess (90~97%). All the results in the present study indicated that the dredged sediment from a coastal fishery could be successfully used as a substitute of loess for removing the red tide alga.

A Study on Interaction of Estuarial Water and Sediment Transport (하구수와 표사의 상호작용에 관한 연구)

  • Lee, H.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

The Effect on the Marine Water and Sediment Quality by the Use of Nano-S 1. Result of Water Tank Experiment (Nano-S가 해양수질 및 저질에 미치는 영향에 관한 연구 1. 실내수조실험 결과)

  • Cho, Hyeon-Seo;Cho, Chon-Rae;Jang, Young-Nam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.158-163
    • /
    • 2005
  • The purpose of this study was to observe the effect on the marine environment by the use of Nano-S. Nano-S was made to apply to improve the red tide bloom. The experiment was performed at round tank with volume of 180 L. Each tank was filled with an aggravated sediment about $14{\pm}1cm$ hight and sea water. The water flow-rate of tank was established on the rate of 6.25 L/hr. Sea water level was fitted to 40 cm, therefore the filled water was about 150 L. The sediment was stabilized during one week. Then the Nano-S and the red mud were added into each tank 0 kg(control), 1 kg(tank A), 2 kg(tank B), 5 kg(tank C) and 10 kg(tank D) each other. The quantity was fulfilled with 0 kg(control), 2.75 kg(tank A), 5.51 kg(tank B), 13.77 kg(tank C) and 27.55 kg(tank D) per square meter of sediment. The experiment was performed during 30 days. Water and sediment samples were collected from each tanks on the before 1hour and after 1, 3, 6, 12 hour and 1st, 3th, 5th, 7th, 10th, 15th, 30th day of the experiment period. The change of water and sediment quality was analyzed before and after applying the Nano-S and the red mud.

  • PDF

Application to the Water and Sediment Model for the Management of Water Quality in Eutrophicated Seto Inland Sea, Japan (부영양화된 뢰호내해의 수질관리를 위한 수ㆍ저질예측모델의 적용)

  • Lee In Cheol;Chang Sun-duck;Kim Jong Kyu;Ukita Masao
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.96-108
    • /
    • 1998
  • The management of water quality and fishery resources with a major environmental problem in eutrophic coastal sea is studied. The numerical experiments using the water-sediment quality model (WSQM) were carried out for the management of water quality at the Seto Inland Sea in Japan. The results of long-term water quality simulation showed responses of seawater quality to input loads to vary in different localities. A formula roughly forecasting water qualify to estimate the effect of loading abatement was proposed. The simulation for the improvement of seawater quality showed the abatements of nutrient loads such as total phosphorus (TP) and total nitrogen (TN) as well as organic loads such as chemical oxygen demand (COD) to be peformed in the eastern Seto Inland Sea from Bisan Seto to Osaka Bay. On the other hand, it is indicated that the increase of loading leads to the increase of primary production. while not straightly to the increase of fish production for the catch of fisheries.

  • PDF

Numerical Analysis for Wave Propagation and Sediment Transport with Coastal Vegetation (연안식생에 의한 표사이동 특성에 관한 수치해석)

  • Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.18-24
    • /
    • 2007
  • The environmental value of coastal vegetation has been widely recognized. Coastal vegetation such as reed forests and seaweed performs several useful functions, including maintaining water quality, supporting fish (and, thus, fisheries), protecting beaches and land from wave attack, stabilizing sea beds and providing scenic value. However, studies on the physical and numerical process of wave propagation, sediment transport and bathymetric change are few and far between compared to those on the hydrodynamic roles of coastal vegetation. In general, vegetation flourishing along the coastal areas attenuates the incident waves through momentum exchange between stagnated water mass in the vegetated area and rapid mass in the un-vegetated area. This study develops a numerical model for describing the wave attenuation and sediment transport in a wave channel in a vegetation area. By comparing these results, the effects of vegetation properties, wave properties and model parameters are clarified.

Potential Meso-scale Coupling of Benthic-Pelagic Production in the Northeast Equatorial Pacific (북동 적도 태평양에서 수층 기초 생산력과 심해저 퇴적물내 미생물 생산력과의 상관성)

  • Kim, Kyeong-Hong;Son, Ju-Won;Son, Seung-Kyu;Chi, Sang-Bum;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.21-34
    • /
    • 2011
  • We determined potential meso-scale benthic-pelagic ecosystem coupling in the north equatorial Pacific by comparing surface chl-a concentration with sediment bacterial abundance and adenosine triphosphate (ATP) concentration (indication of active biomass). Water and sediment samples were latitudinally collected between 5 and $11^{\circ}N$ along $131.5^{\circ}W$. Physical water properties of this area are characterized with three major currents: North Equatorial Current (NEC), North Equatorial Count Current (NECC), and South Equatorial Current (SEC). The divergence and convergence of the surface water occur at the boundaries where these currents anti-flow. This low latitude area ($5{\sim}7^{\circ}N$) appears to show high pelagic productivity (mean phytoplankton biomass=$1266.0\;mgC\;m^{-2}$) due to the supplement of high nutrients from nutrient-enriched deep-water via vertical mixing. But the high latitude area ($9{\sim}11^{\circ}N$) with the strong stratification exhibits low surface productivity (mean phytoplankton biomass=$603.1\;mgC\;m^{-2}$). Bacterial cell number (BCN) and ATP appeared to be the highest at the superficial layer and reduced with depth of sediment. Latitudinally, sediment BCN from low latitude ($5{\sim}7^{\circ}N$) was $9.8{\times}10^8\;cells\;cm^{-2}$, which appeared to be 3-times higher than that from high latitude ($9{\sim}11^{\circ}N$; $2.9{\times}10^8\;cells\;cm^{-2}$). Furthermore, sedimentary ATP at the low latitude ($56.2\;ng\;cm^{-2}$) appeared to be much higher than that of the high latitude ($3.3\;ng\;cm^{-2}$). According to regression analysis of these data, more than 85% of the spatial variation of benthic microbial biomass was significantly explained by the phytoplankton biomass in surface water. Therefore, the results of this study suggest that benthic productivity in this area is strongly coupled with pelagic productivity.

Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea (시화호의 중금속 오염과 산화-환원 상태의 공간적 차이)

  • Hyeon, Sang-Min;Kim, Eun-Su;Paeng, U-Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

A Numerical Prediction for Water Quality at the Developing Region of Deep Sea Water in the East Sea Using Ecological Model (생태계모델을 이용한 동해 심층수 개발해역의 수질환경 변화예측)

  • Lee, In-Cheol;Yoon, Seok-Jin;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.34-41
    • /
    • 2008
  • As a basic study for developing a forecasting/estimating system that predicts water quality changes when Deep Sea Water (DSW) drains to the ocean after using it, this study was carried out as follows: 1) numerical simulation of the present state at DSW developing region in the East sea using SWEM, 2) numerical prediction of water quality changes by effluent DSW, 3) analysis of influence degree 'With defined DEI (DSW effect index) at F station. On the whole, when DSW drained to the ocean, Chl-a, COD and water-temperature were decreased and DIN, DIP and DO were increased by effluent DSW, and Salinity was steady. According to analysis of influence degree, the influence degree of DIN was the highest and it was high in order of Chl-a, COD, Water-temperature, DO, DIP and Salinity. The influence degree classified by DSW effluent position was predicted that suiface outflow was lower than bottom outflow. Ad When DSW discharge increased 10 times, the influence degree increased about $5{\sim}14$ times.