• Title/Summary/Keyword: Sea trial test of ship

Search Result 73, Processing Time 0.022 seconds

A Study on a Sea Trial and repaired test ship (시운전과 수리시험선박에 관한 고찰)

  • Jung-Hoon Park;Jung-Hyun An
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.7-9
    • /
    • 2023
  • The domestic law establishes a sea trial prohibited area and stipulates that a sea trial is prohibited in this area. However, depending on the user, the term is used interchangeably with on-board test after repaired, In particular, ships undergoing test called a sea trial after remodeling and repairing ships at repair shipyards do not comply with these regulations. By this study, we would like to look at the relevant laws and regulations to see if these ships can be interpreted as sea trial, and suggest the necessity of managing repaired test ships with risks comparable to those of sea trial ships.

  • PDF

Model-Ship Correlation Study on the Powering Performance for a Large Container Carrier

  • Hwangbo, S.M.;Go, S.C.
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.4
    • /
    • pp.44-50
    • /
    • 2001
  • Large container carriers are suffering from lack of knowledge on reliable correlation allowances between model tests and full-scale trials, especially at fully loaded condition, Careful full-scale sea trial with a full loading of containers both in holds and on decks was carried out to clarify it. Model test results were analyzed by different methods but with the same measuring data to figure out appropriated correlations factors for each analysis methods, Even if it is no doubt that model test technique is one of the most reliable tool to predict full scale powering performance, its assumptions and simplifications which have been applied on the course of data manipulation and analysis need a feedback from sea trial data for a fine tuning, so called correlation factor. It can be stated that the best correlation allowances at fully loaded condition for both 2-dimensional and 3-dimensional analysis methods are fecund through the careful sea trial results and relevant study on the large size container carriers.

  • PDF

A Sea-Trial Test of a Pendulum-type Mass Driving Anti-Rolling System for Small Ships (소형 선박용 진자식 횡동요 저감장치의 실선시험)

  • 문석준;박찬일;정종안;김병인;윤현규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.438-441
    • /
    • 2004
  • Reduction of a ship's rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargos as well as improving the comfort of the ride. A mass driving anti-rolling system (MD-ARS) might be one candidate of several systems against the ship's rolling. In this paper, a sea-trial test on a pendulum-type MD-ARS passively operated is carried out in Suyoung, Busan. After the system is installed on the cabin of the small leisure boat, a series of test is conducted before and after operating the system. Through the test, it is confirmed that the roll rate of the ship is pretty well reduced by the system.

  • PDF

Identification of Four-DOF Dynamics of a RIB using Sea Trial Tests (I) - Sea Trial Test, Resistance and Propulsion Model (해상시험 결과를 이용한 RIB의 4자유도 동력학 식별 (I) - 해상시험, 저항·추진 모델)

  • Yoon, Hyeon-Kyu;Yun, Kun-Hang;Park, In-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • RIB(Rigid Inflatable Boat) is widely used for coastal transportation in the commercial use and for ISR(Intelligence, Surveillance, Reconnaissance) in the military use. Since RIB is around 10 meters in length and over 30 knots in speed, its motion characteristics in waves is quite different from a large scale ship. When it turns, large roll occurs and heeling direction is opposite to the large ship's case. Currently, many countries are developing USV(Unmanned Surface Vehicle) of which type is RIB. In order to develop high performance autopilot and way point controller, it is very important to identify RIB's motion characteristics. In this paper, sea trial test results of a 7-meter RIB such as speed, turning, zig-zag, and way point control tests were represented and its resistance and propulsion model was identified by using sea trial data and Savitsky's formula. In addition, the state space model which will be used in the identification of the four-degree-of-freedom dynamics in the next step was formulated and the identification procedure was proposed.

Study on icebreaking performance of the Korea icebreaker ARAON in the arctic sea

  • Kim, Hyun-Soo;Lee, Chun-Ju;Choi, Kyung-Sik;Kim, Moon-Chan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.208-215
    • /
    • 2011
  • A full-scale field trial in ice-covered sea is one of the most important tasks in the design of icebreaking ships. The first Korean icebreaking research vessel 'ARAON', after her delivery in late 2009, had a sea ice field trial in the Arctic Sea during July-August, 2010. This paper describes the test procedures and data analysis on the icebreaking performance of the IBRV ARAON. The data gathered from the icebreaking performance test in the Chukchi Sea and the Beaufort Sea during the Arctic voyage of ARAON includes the speed and engine power of the ship as well as sea ice thickness and strength data. The air temperature, wind speed and heading of the ship were also measured during each sea ice trial. The ARAON was designed to break 1 m thick level ice with a flexural strength of 630kPa at a continuous speed of 3knots. She is registered as a KR POLAR 10 class ship. The principal dimensions of ARAON are 110 m, 19 m and 6.8 m in length, breadth and draft respectively. She is equipped with four 3,500kW diesel-electric main engines and two Azipod type propulsion motors. Four sea ice trials were carried out to understand the relationship between the engine power and the ship speed, given the Arctic ice condition. The analysis shows that the ARAON was able to operate at 1.5knots in a 2.5m thick medium ice floe condition with the engine power of 5MW, and the speed reached 3.1 knots at the same ice floe condition when the power increased to 6.6MW. She showed a good performance of speed in medium ice floe compared to the speed performance in level ice. More detailed analysis is summarized in this paper.

A New Sea Trial Method for Estimating Hydrodynamic Derivatives

  • Rhee, Key-Pyo;Kim, Kun-ho
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.3
    • /
    • pp.25-44
    • /
    • 1999
  • Estimation efficiencies according to different sea trial are investigated in connection with sensitivity analysis, and new trial method is proposed which can improve the estimation efficiency of hydrodynamic derivatives. MMG Equation with Kijima's formula is used for simulation. Extended Kalman Filter is chosen for estimation technique and hydrodynamic derivatives of interest is limited to 12 of those in sway and yaw equations. Esso Osaka is selected for the test ship. Sensitivity analysis and estimation results based on conventional trials show that a more sensitive derivative gives more efficient estimation result. Sensitivities of nonlinear derivatives become pronounced in the trial where steady condition lasts longer such as turning test, while sensitivities of linear derivatives gas a larger values in the trial where unsteady condition lasts longer such as 10deg-10deg zigzag test. Consequently, in new method , named S-type trial, steady and unsteady condition are combined appropriately to increase sensitivities. Linear derivatives are estimated better in S-type trial and the estimation of nonlinear derivatives is improved to extent.

  • PDF

The Study on the Effect of Loading Condition on Ship Manoeuvrability (흘수변화가 선박 조종 성능에 미치는 영향에 관한 연구)

  • Im, Nam-Kyun;Kweon, Suk-Am;Kim, Se-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.105-112
    • /
    • 2005
  • IMO standards for ship manoeuvrability were applied from January 1, 2004. Though model test or sea trial in full load condition is needed, it is not always possible to get such data for every ships. Therefore it is required to study the effect of loading conditions on ship manoeuvrability. Approximate formulae to estimate the hydrodynamic forces acting on a ship and the 2nd overshoot angle of $10^{\circ}$/$10^{\circ}$ zig-zag test in certain loading condition are proposed in this study These were derived from the results of model test and sea trial data. Captive model tests for 7 ships with 15 different loading conditions and sea trial data including free running test of 6 cases were used. Compared with experiment data and prediction formulae already proposed by others, the approximate formulae in this study show good agreement with model test results.

Application of Real Time Currents Prediction in Ship Speed Correction of Sea Trial Test (실선시운전 선속 보정을 위한 실시간 해수유동 예측 활용)

  • Lee, Moonjin;Lee, Han-Jin;Shin, Myung-Soo;Jung, Soo-Won
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.593-600
    • /
    • 2014
  • Information supporting system which is based on real-time prediction of currents to be applicable to the sea trial test of ship is developed. In the system, the spatial distribution of currents at specific time and the trends of variability of currents occurring at specific sites are also given as valuable information for sea trial test of ship. In addition, the system has a capability to connect with a GPS which provides information including speed loss of the ship caused by currents on the way of voyage. With information from the sea trial test, the system is also capable of delivering optimum time and pathways by considering calculated speed loss of ship at specific time and its pathway. Having information described as above, the real-time current prediction system supports and provides functions of not only running the test in an efficient way but also providing valuable information which is encouraged to be used during the test by installing at the ship.

Development of Solution for Safety and Optimal Weather Routing of a Ship

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Mai, Thi Loan;Nguyen, Tien Thua;Vo, Anh Hoa;Seo, Ju-Won;Yoon, Gyeong-Hwan;Yoon, Hyeon-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.318-320
    • /
    • 2018
  • When a ship sails on sea, it may be influenced by the environmental disturbance such as wind, wave, sea surface temperature, etc. These affect on the ship's speed, fuel consumption, safety and operating performance. It is necessary to find the optimal weather route of a ship to avoid adverse weather conditions which can put the crews in serious danger or cause structural damage to the vessel, machinery, and equipment. This study introduced how to apply A* algorithm based on sea trial test data for determining the optimal ship routes. The path cost function was modelled as a function of minimum arrival time or minimum energy depending on the time of various environment conditions. The specially modelled path-cost function and the safety constraints were applied to the A* algorithm in order to find the optimal path of the ship. The comparison of ship performances estimated by real sea trial's path and estimated optimal route during the voyage of the ship was investigated. The result of this study can be used to create a schedule to ensure safe operation of the ship with short passage time or minimum energy. In addition, the result of this study can be integrated into an on-board decision supporting expert system and displayed in Electronic Chart Display and Information System (ECDIS) to provide all the useful information to ship master.

  • PDF

Tidal current simulation around the Straits of Korea and its application to a speed trial

  • Lee, Hee-Su;Lee, Byung-Hyuk;Kim, Kyung sung;Kim, Sung Yong;Park, Jong-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.474-481
    • /
    • 2019
  • The speed trial of a ship is one of the important elements guaranteeing its performance under the contract between the ship owner and shipbuilding company. A speed trial at sea, where the tidal current and waves are suppressed to the maximum, can prevent measurement errors due to external force conditions. On the other hand, it is difficult to maintain a calm sea state in most sea areas determined by the influence of the tidal current, wave, wind, etc. Therefore, this study evaluated a method of simulating a tidal current, which is one of the external force conditions, at the speed test operation of a ship, and applied the simulation result to the plan of a speed trial.