• 제목/요약/키워드: Sea Wave Generation

Search Result 86, Processing Time 0.022 seconds

NUMERICAL MODEL FOR STORM SURGES

  • Yamashita, Takao;Bekku, Isao
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.1-4
    • /
    • 1995
  • Storm surges are defined as abnormal changes of sea surface elevation whose periods range from several hours to days. The generation mechanism is separated into two. One is sea water suction due to atmospheric depression and the other is wind-driven sea water circulation. The former is a forced long-wave motion which is accompanied by a typhoon. (omitted)

  • PDF

Research and Anaysis of Wave Energy Characteristic for Wave Generation System

  • Oh Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.520-526
    • /
    • 2006
  • Wave Energy is a derivative of the solar energy input to the earth, which is accumulated on open water surfaces by the action of the winds Waves are disturbances in the water surface. This paper is interested primarily in progressive waves, which carry energy from one place to another Waves are irregular in size and frequency. Moreover the surface of the sea is one of the most hostile environments for engineering structures and materials. The idea of harnessing the tremendous power of the ocean's waves is not new. Hundreds of wave energy conversion techniques have been suggested over the last two centuries. Although many WECS (Wave Energy Conversion Systems) have been invented, only a few systems have been tested and evaluated. This paper describes the characteristic of WES (Wave Energy System) in terms of, devices, resource and potential, etc.. Finally, this paper provides a summary of general and specific conclusions and recommendations concerning WECS potential in Korea.

Numerical study for classifying generation types of rip currents at the beaches of the East Sea coast (수치모의를 통한 동해안 해수욕장의 이안류 발생 형태 분류 연구)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.645-655
    • /
    • 2022
  • Recently rip currents are frequently observed in the summer at the beaches located along the East Sea coast. To understand the generation types of rip currents occurred at the Ease Sea beaches, numerical simulations of rip currents over the topographies of the Sokcho, Naksan, Gyeongpo, Mangsang beaches were performed by using a Boussinesq-type wave and current model, FUNWAVE. The offshore and nearshore topographically-controlled rip currents and the transient rip currents were well reproduced due to the alongshore non-uniformities involving the phase interaction effects. This study looked over the generation types of rip currents to occur at the beaches with complicated field bathymetries.

Analysis of Wave Parametric Characteristics using WAVEWATCH-III Model and Observed Buoy Data (파랑모델과 부이 자료를 이용한 파랑인자 특성 분석)

  • 장유순;서장원;김태희;윤용훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.274-284
    • /
    • 2003
  • The analysis of wave parametric characteristics in sea regions in the vicinity of Korean Peninsula have been carried out using the third generation wave model, WAVEWATCH-III (Tolman, 1999) and four observed buoy data of Korea Meteorological Administration (KMA). Significant wave height increases about 2-3 hours later after the increase of wind speed. Maximum correlation coefficient between two parameters appears in Donghae buoy data, which is at off-shore region. When land breeze occurs, it can be found that the correlation coefficient decreases. Time differences between wind speeds and wave heights correspond to significant tidal periods at all of the buoy locations except for Donghae buoy. After verifying the WAVEWATCH-III model results by the comparing with observed buoy data, we have carried out numerical experiments near the Kuroshio current and East Sea areas, and then reconfirmed that when there exist an opposite strong current in the propagation direction of the waves or wind direction, wave height and length get higher and shorter, respectively and vice versa. It has been shown that these modulations of wave parameters are considerable when wind speed is week or mean current is relatively strong, and corresponding values have been represented.

A Buoyant Combined Solar-Wave Power Generation and Its Application for Emergency Power Supply of Nuclear Power Plant (부유식 태양광-파력 복합발전 개념 및 원자력발전소 비상전원을 위한 응용)

  • Cha, Kyung-Ho;Kim, Jung-Taek
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents a Combined solar-wave Power Generation (CPG) concept that the CPG unit is maintained as buoyant at the level of sea water and it is also supported by a submerged tunnel, with the aim of supplying emergency electric power during the station blackout events of nuclear power plants. The CPG concept has been motivated from the 2011 Fukushima-Daiichi Accidents due to the loss of both offsite AC power and emergency diesel power caused by natural hazards such as earthquake and tsunami. The CPG is conceptualized by applying different types and different sites for emergency power generation, in order to reduce common cause failures of emergency power suppliers due to natural hazards. Thus, the CPG can provide a new mean for supplying emergency electric power during station blackout events of nuclear power plants. For this application, the CPG requirements are described with a typical configuration at the ocean side of a submerged tunnel.

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

A Study of the Appearance Characteristics and Generation Mechanism of Giant Waves (대양에서의 거대파랑 출현 특성과 발생 기구에 관한 연구)

  • Shin Seung-Ho;Hong Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.181-187
    • /
    • 2006
  • In the wave spectrum distribution based on linear wave theory, the appearance of a giant wave whose wave height reaches to 30m has been considered next to almost impossible in a real sea However since more than 10 giant waves were observed in a recent investigation of global wave distribution which was carried out by the analysis of SAR imagines for three weeks, the existence of the giant waves is being recognized and it is considered the cause of many unknown marine disasters. The change of wave height distribution concerning a formation of wave train, nonlinear wave to wave interaction and so on were raised as the causes of the appearance of the giant waves, but the occurrence mechanism of the giant waves hasn't been cleared yet. In present study, we investigated appearance circumstances of the giant waves in real sea and its occurrence mechanism was analyzed based on linear and nonlinear wave focusing theories. Also, through a development of numerical model of the nonlinear $schr\"{o}dinger$ equation, the formations of the giant wave from progressive wave train were reproduced.

Generation and Growth of Long Ocean Waves along the West Coast of Korea in March 2007 (2007년 3월 한국 서해안에 발생한 해양장파의 형성과 성장과정)

  • Choi, Byoung-Ju;Park, Yong-Woo;Kwon, Kyung-Man
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.453-466
    • /
    • 2008
  • In order to examine the generation mechanism of long ocean waves along the west coast of Korea and to understand the amplification process of the long ocean waves, sea level, atmospheric pressure and wind data observed every minute from 2007 March 29 to 2007 April 1 were analyzed and onedimensional numerical ocean model experiments were performed. An atmospheric pressure jump propagated southeastward from Backryungdo to Yeonggwang along the west coast of Korea with speed of $13{\sim}27\;m/s$ between 2007 March 30 23:00 and 2007 April 1 1:30. Average magnitude of pressure jump was 4.2 hPa. As a moving atmospheric jump propagated from north to south along the coast, long ocean waves were generated and the sea level abnormally rose or fell at Anheung, Kunsan, Wido and Yeonggwang. Average amplitude of sea level rise (or fall) was about 113.6 cm. In a one-dimensional numerical ocean model, nonlinear shallow water equations were numerically integrated and a moving atmospheric pressure jump with traveling speed of 24 m/s was used as an external force. While the atmospheric pressure jump travels over 60 m depth ocean, a long ocean wave is generated. Because the propagation speed of the atmospheric jump is almost equal to that of the long ocean wave, Proudman resonance occurs and the long ocean wave amplifies. As the atmospheric pressure jump moves into the coastal area shallower than 60 m, the speed of the long ocean wave decreases and Proudman resonance effect decreases. However, the amplitude of the long ocean wave increases and wave length becomes shorter because of shoaling effect. When the long ocean wave hits the land boundary, amplitude of the long ocean wave drastically amplifies due to reflection. Data analysis and numerical experiments suggest that the southeastward propagation of an atmospheric pressure jump over the shallow ocean, which is a necessary condition for Proudaman resonance, generated the long ocean waves along the west coast of Korea on 2007 March 31 and the ocean waves amplified due to shoaling effect in the coastal area and reflection at the shore.

A study on wireless power generation for marine information acquisition using EAP actuator (EAP 액추에이터를 이용한 해양 정보 취득용 무선 전원 발생에 관한 연구)

  • Jeong, Eun-A;Lee, Kee-Yoon;Jeong, Hwang-Hun;Yun, So-Nam
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.49-53
    • /
    • 2011
  • This study concerns about wireless power generation that uses the energy harvester with EAP actuator. The UWSN(Underwater Wireless Sensor Network) has been considered many times by many researches. Because the information of underwater is getting important to secure the resource or to predict the meteorological phenomena. But the sensor node in the UWSN is driven by the acoustic wave to communicate with other sensor node. And this acoustic wave usually spends a 100 times energy than the RF(Radio Frequency) wave due to transfermation medium(sea water). Therefore the power source of the sensor node is very important that is needed to improve in the UWSN. For this purpose, the energy harvester is made by the acrylic elastomer in this study. And the electrode is modified with an aluminum impurity to improve the efficiency of energy harvester. After that, the modified energy harvester is experimented to confirm the improvement of the energy efficiency.

Design of Marine Transport Facilitie's Anti-Fouling System of Wave Power Generation (해양교통시설물의 파력발전 방오장치 설계)

  • Kim, Ji-Yoon;Jo, Kwan-Jun;Han, Sung-Hun;Oh, Jin-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.192-192
    • /
    • 2011
  • For the safety of vessels sailing Marine Transport Facility announces sea route, reefs or shallow water. Photovoltaic, independent power system, installation in the general Marine Transport Facilities to be used in the marine lantern. Due to install of communications, controls, power consumption inceases. And the weather of cloudy day or rainy, generation of electricity is decrease. Recently, power system of marine facility using a hybrid generation system, photovoltaic generation system and wave power generation system. But increase of adhered shellfish inside the water column, is the cause of the reduction of efficiency. So study was conducted to Single channel AFS(Anti-Fouling system). In this paper we offer the Multi channel AFS for Marine Transport Facility and have simulated. Improve the accuracy of the research, we using the result of anode, in the experiment were actually in the buoy, is based on simulation. The experimental results is shown every anode's, in the Marine Transport Facility, ionization was conducted identically.

  • PDF