• 제목/요약/키워드: Sea Water Desalination

검색결과 48건 처리시간 0.024초

구형용기의 상부면 냉각에 의한 해수 동결거동의 실험적 연구 (An Experimental Study on Sea Water Freezing behavior in a Rectangular vessel Cooled From Above)

  • 최부홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.529-537
    • /
    • 1998
  • Currently as due to the rapid development of industry and increase in population we meet serious problems concerning the shortage and pollution of water. In the country many experts predict a shortage of water approaching 450 million tons by the year 2006. To cope with this serious problem it is necessary to construct desalination plants. In the adoption of a desalination system the most important factor is the cost of fresh water production,. In general LNG is stored in a tank as a liquid state below $-162^{\circ}C$. When it is serviced, however the LNG absorbs energy from a heat source and transforms to a high pressure gaseous state. During this process a huge amount of cold energy accumulated in cooling LNG is wasted. This wasted cold energy can be utilized to produce fresh water by using a sea water freezing desalination system. In order to develop a sea water freezing desalination system and to establish its design technique qualitative and quantitative data regarding the freezing behavior of sea water is required in advance, The goals of this study are to reveal the freezing behavior of sea water is required in advance. The goals of this study are to reveal the freezing mechanisms of sea water to measure the freezing rate and to investigate the freezing heat-transfer characteristics,. The experimental results will provide a general understanding of sea water freezing behavior in a rectangular vessel cooled from above.

  • PDF

원관내의 해수동결거동에 관한 실험적연구 (An Experimental Study on Sea Water Freezing Behavior in a Cooled Circular Tube)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.680-686
    • /
    • 1998
  • In the adoption of a desalination system the most important factor is the cost of fresh water pro-duction. In general LNG is stored in a tank as a liquid state below $-162^{\circ}C$ When it is serviced however the LNG absorbs energy from a heat source and it is transformed to a high pressure gaseous state. During this process a huge amount of cold energy accumulated in cooling LNG is wasted. This wasted cold energycan be utilized to produce fresh water by using a sea water freez-ing desalination system. in order to develop a sea water freezing desalination system and to estab-lish its design technique qualitative and quantitative data regarding the freezing behavior of sea water is required in advance. The goals of this study are to reveal the freezing mechanisms of sea water in a cooled circular tube to measure the freezing rate and to investigate the freezing heat-transfer characteristics. The experimental results provide a general understanding of sea water freezing behavior in a cooled circular tube.

  • PDF

구형용기의 하부면 냉각에 의한 해수 동결거동의 기초적 연구 (A Fundamental Study on Sea Water Freezing Behavior in a Rectangular Vessel Cooled from Below)

  • 김명준;길병래;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권5호
    • /
    • pp.564-570
    • /
    • 1997
  • The most important factor for the desalination system is the fresh water production cost dependent upon the possible energy source which should be obtained easily and with low price. Recently in Korea the demand of LNG, as a cheap and clean energy which does not cause an environmental problem, has sharply been increased. In general, LNG is storaged in a tank as a liquid state below -162 'C. When it is serviced, however, the LNG absorbs energy from a heating source and transforms to the gaseous state with high pressure. During this process a huge amount of cold energy accumulated in LNG is wasted. This waste cold energy can be utilized for producing fresh water from sea water using a sea water freezing desalination system. In order to develop a sea water freezing desalination system and to establish its design technique, a qualitative and quantitative data regarding the freezing behavior of sea water is needed in advance. The goal of this study, therefore, are to reveal the freezing mechanism of sea water, to measure the freezing rate, and to investigate the freezing heat-transfer characteristics. The experimental results help to provide a general understanding of the sea water freezing behavior in a Rectangular vessel cooled from below.

  • PDF

역삼투법에 의한 해수의 담수화에 관한 연구 (Desalination of Seawater by Reverse Osmosis)

  • 이선주
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.155-164
    • /
    • 2004
  • Many countries, including Korea, suffer from a shortage of freshwater. With increases in population and the quality of life, along with large-scale expansion in industrial and agricultural activities, more freshwater is needed. Available resources, Including ground water, are limited, and desalination presents the opportunity for a new unlimited source of freshwater from the sea. The objectives of this study were to test membrane performance in seawater desalination and to examine the quality of water produced. bath well and sea water were used as water sources. Typically used membrane for seawater desalination and high rejection seawater desalination membrane are maintained at almost same recovery rate and permeate flux, while the conductivity was lower in the operation of typically used seawater membrane. The treated water quality using two types of membranes is satisfied with the Korea drinking water quality standards.

태양에너지 해수담수화를 위한 3중 효용 증발식 담수기 개발 (Development of 3th Effects Evaporative desalination system for Solar Desalination System)

  • 황인선;주홍진;윤응상;곽희열
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.201-201
    • /
    • 2010
  • The evaporative desalination system with solar energy would be the efficient and attractive method to get fresh water. This study was described the development of Multi Effect Distillation(MED) with solar energy desalination system. The system was designed and manufactured Multi effect distillation on the capacity of $3m^3$/day. The experimental apparatus consists mainly of ejector pump, Hot water pump, flow meter, demister, cooler, evaporator and condenser. Evaporator and condenser were made Shell&Tube Heat Exchanger type with corrugated tube. The experimental variables were chosen $75^{\circ}C$ for hot water inlet temperature, 40, 60 and $80{\ell}$/min for hot water inlet volume flow rate, 6.0 and $8.0{\ell}$/min for evaporator feed seawater flow rate, $18^{\circ}C$ for sea water inlet temperature to cover the average sea water temperature and the salinity of sea water is measured about 33,000 PPM (parts per million). for a year in Korea. This study was analyzed the results of thermal performance of Multi Effect Distillation. The results are as follows, The experimental Multi effect distillation is required about 40 kW heat source for production of $3m^3$/day fresh water. Various operating flow rate was confirm in the experiments to get the optimum design data and the results showed that the optimum total flow was $8.0{\ell}$/min. Comparison of Single Effect Distillation with Multi Effect Distillation showed MED is at least more than double of SED.

  • PDF

기획특집 - 해수담수화 플랜트 소개 (The Introduction of Desalination Plant System)

  • 조맹수
    • 기술사
    • /
    • 제42권3호
    • /
    • pp.27-31
    • /
    • 2009
  • Recent desalination plant system are being operated by applying one of the technologies as like MSF, MED and, or RO. The production cost of pure water from sea water by the desalination plant was U$9/m$^3$ in 1960, but now has been reduced to U$1/m$^3$ at present. The Power and Desalination Plant Project in Al Cobar of Saudi Arabia gave good chance to us export the similar plant systems actively to the world market. 1Hidd IWPP Project in Bahrain, Taweelah B Extension Project in Abu Dhabi of UAE and Ras Laffan B IWPP of Qatar are the recent large scale desalination projects under construction.

  • PDF

태양에너지 해수담수화시스템에의 적용을 위한 판형 해수담수기의 열성능에 관한 실험적 연구 (Experimental Study on Thermal Performance of Palte-type Fresh Water Generator for applying Solar Energy Desalination System)

  • 김정배;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.35-41
    • /
    • 2007
  • To demonstrate the desalination system, the demo-plant was scheduled to be installed. The system was planned to use solar thermal collector as heat source and PV as electricity source. For the design of the desalination demonstration system, firstly the solar thermal system would be well designed from the result between the supplied heat into the fresh water generator and the fresh water yield. The generator for demonstration system was chosen as the fresh water generator of the single stage and effect with plate-type heat exchanger using low pressure evaporation method. The test facility for the tests to reveal the relationship between the fresh water yield and the supplied heat flow rate was designed and manufactured. The maximum fresh water yield of two fresh water generators applied in this study was designed as 1.5 Ton/day. The parameters relating with the performance of fresh water generator are known as sea water inlet temperature, hot water inlet temperature, and hot water flow rate. Through the experiments, this study firstly showed detail operation characteristics of the generator and designed the solar thermal system for the demonstration system.

LNG 선박 하이브리드 엔진 및 해수 담수화 복합 시스템 (LNG-Vessels Hybrid Engine Seawater Desalination Complex System)

  • 임재준;이동헌;변기식;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.663-664
    • /
    • 2016
  • 해수를 이용한 온도차 발전은 심층수와 표층수의 온도 차이를 이용한 암모니아(냉매)를 사용하여 폐쇄적인 액화와 기화를 반복하여 터빈을 돌리는 방식이다. 온도차 발전의 특성상 온도 차이가 클수록 에너지 발전 특성은 좋아진다. 이는 심층수 표층수의 온도차이가 커야 됨을 이야기 한다. 하지만 겨울이 되면 표층수와 심층수의 온도차이가 크지 않아 에너지 효율이 떨어지는 문제점이 있다. 그리고 해수 담수화기술은 지구의 97%를 차지하지만 우리가 먹을 수 없는 바닷물을 담수로 바꾸는 기술로, 해수 담수화기술로 생산된 담수는 선박내의 공업, 식수 등 각종 용수로 사용할 수 있다. 본 논문에서는 현재 문제가 되고 있는 계절에 따른 표층수의 온도 변화를 개선하기 위해 기존에 사용하고 있는 선박용 디젤엔진의 열에너지와 LNG의 냉열 에너지를 사용한 온도차 발전을 위해 LNG 운송 선박을 기준으로 LNG 운송 선박 하이브리드 엔진에 관한 연구와 냉열 에너지를 활용한 해수 냉동법으로 담수화하는 발전 및 담수화를 복합시킨 연구를 제시하고자 한다.

  • PDF

MVRS해수담수화 및 제염기술

  • 김상현;김동국;전원표
    • 한국기술혁신학회:학술대회논문집
    • /
    • 한국기술혁신학회 2001년도 춘계학술대회:발표자료
    • /
    • pp.285-302
    • /
    • 2001
  • At the present time the desalination technology of sea water for portable water in islands employs the RO method. The technology which needs complicated pretreatment processes with various chemicals can generate secondary water pollution and the high maintenance costs such as replacements of filters and membranes make islanders nearly impossible to operate. The MVRS technology for desalination of sea water however has several advantages such as constant production of quality portable water and capability of managing broad operating load. The variable-speed turbo-type vapor compressors employed in the system can utilize wind energy which is abundant in most Korean islands. Salt as a by-product can be produced by applying solar energy to the salt-concentrated waste water from the system. This paper discusses the relating topics such as technical and economical viabilities of the new MVRS desalination system for the production of portable water and salt as a by-product using new & renewable sources of energy.

  • PDF

태양열 해수담수화 시스템을 위한 다중효용 담수기 개발 (Development of Multi Effect Distillation for Solar Thermal Seawater Desalination System)

  • 주홍진;황인선;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2011
  • This study was accomplished to evaluate the performance of Multi Effect Distillation(MED) for solar thermal desalination system. It was designed Multi effect distillation with $3m^3$/day capacity and Shell&Tube type heat exchanger. Also, The effective heat transfer of Shell&Tube heat exchanger was used Cu(90%)-Ni(10%) corrugated tube. The parameters relating to the performance of Multi Effect Distillation are known as hot water flow rate. The experimental conditions for each parameters were $18^{\circ}C$ for sea water inlet temperature, $6m^3$/hour sea water inlet volume flow rate, $75^{\circ}C$ for hot water inlet temperature, 2.4, 3.6, and $4.8\;m^3$/hour for hot water inlet volume flow rate, respectively. The results are as follows, Development for Multi effect distillation was required about 40kW heat and 35kW cooling source to produce $3m^3$/day of fresh water. Based on the results of this study, It makes possible to secure economics of desalination system with solar energy which is basically needed development of high efficiency fresh water generator.