• Title/Summary/Keyword: Sea Surface Topography

Search Result 112, Processing Time 0.03 seconds

Quantitative Analysis of Microplastics in Coastal Seawater of Taean Peninsula using Fluorescence Measurement Technique (형광측정기법을 이용한 태안반도 연안 표층수의 미세플라스틱 정량분포 스크리닝)

  • Un-Ki Hwang;Hoon Choi;Ju-Wook Lee;Yun-Ho Park;Wonsoo Kang;Moonjin Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.1
    • /
    • pp.68-77
    • /
    • 2023
  • In this study, we investigated the quantitative distribution of microplastics in the surface seawater at 8 points near the Taean Peninsula using fluorescence staining. The study revealed a detection range of microplastics from 0 to 360.5 particles/l, with an average of 149.7 ± 46.0 particles/l. When classifying the microplastics by size, it was found that particles smaller than 50 ㎛ were dominant, although there were differences at Site 3. Moreover, it was not possible to identify clear correlations when comparing the number of microplastics based on collection area and particle size. Various physical and chemical factors, including plastic material, dynamic ocean conditions (such as currents, wind, waves, tides), geological characteristics (topography, slope), sediment materials including coastal organisms, human activities (fishing, development, tourism), and weather conditions (floods, rainfall), affect the behavior of microplastics. Therefore, future efforts should focus on standardizing quantitative analysis methods and conducting fundamental research on microplastic monitoring, including the analysis of environmental factors.

Characterizing Geomorphological Properties of Western Pacific Seamounts for Cobalt-rich Ferromanganese Crust Resource Assessment (서태평양 해저산의 망간각 자원평가를 위한 해저지형 특성 분석)

  • Joo, Jongmin;Kim, Jonguk;Ko, Youngtak;Kim, Seung-Sep;Son, Juwon;Pak, Sang Joon;Ham, Dong-Jin;Son, Seung Kyu
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.121-134
    • /
    • 2016
  • We characterize the spatial distribution of Cobalt-rich ferromanganese crusts covering the summit and slopes of a seamount in the western Pacific, using acoustic backscatter from multibeam echo sounders (MBES) and seafloor video observation. Based on multibeam bathymetric data, we identify that ~70% of the summit area of this flattopped seamount has slope gradients less than $5^{\circ}$. The histogram of the backscatter intensity data shows a bi-modal distribution, indicating significant variations in seabed hardness. On the one hand, visual inspection of the seafloor using deep-sea camera data exhibits that the steep slope areas with high backscatter are mainly covered by manganese crusts. On the other hand, the visual analyses for the summit reveal that the summit areas with relatively low backscatter are covered by sediments. The other summit areas, however, exhibit high acoustic reflectivity due to coexistence of manganese crusts and sediments. Comparison between seafloor video images and acoustic backscatter intensity suggests that the central summit has relatively flat topography and low backscatter intensity resulting from unconsolidated sediments. In addition, the rim of the summit and the slopes are of high acoustic reflectivity because of manganese crusts and/or bedrock outcrops with little sediments. Therefore, we find a strong correlation between the acoustic backscatter data acquired from sea-surface multibeam survey and the spatial distribution of sediments and manganese crusts. We propose that analyzing acoustic backscatter can be one of practical methods to select optimal minable areas of the ferromanganese crusts from seamounts for future mining.

The Spatial Distribution of Snowfall and its Development Mechanism over the Honam Area (호남 지방의 국지적 강설 분포와 그 차이의 원인에 관한 연구)

  • Lee Seung-Ho;Lee Kyoung-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.457-469
    • /
    • 2006
  • This study aims to understand the characteristics of spatial distribution of snowfall and to analyze its development mechanism in Honam province in Korea. The areas of snowfall in Honan area can be divided into the seven sub-area by snowfall pattern. In the west coastal area of heavy snowfall and the southwest coastal area of heavy snowfall, snowfall develops over reason of ocean by Siberian High while in the northern inland area of heavy snowfall and the southern inland area of heavy snowfall, it develops when a strong Siberian High affects to inland. Then, much snowfall is by a forced ascending due to topography in Namwon, Imsil and Gwangju of the northwestward of the Noryung and Sobaek mountain ranges while it is weak in Jeonju and Suncheon of the low plains and the southeastward. In the mountainous area of heavy snowfall and the south coastal area of light snowfall, cyclone is also one of causes of snowfall. In the southwest coastal area, snowfall is meager than the southwest coastal area of heavy snowfall because this area is far from the west coast. It is confirmed that the snowfall difference of the coast, inland and mountainous area appears by temperature difference of sea surface and 850hPa temperature, wind speed of Siberian High.

Overview of Climate Change and Unusual Regional Climate and the Future (기후변화와 이상기상 발생의 현황과 미래)

  • Moon Sung-Euii
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2000.11a
    • /
    • pp.3-11
    • /
    • 2000
  • The Asian summer monsoon has a profound social and economic impact in East Asia and its surrounding countries. The monsoon is basically a response of the atmosphere to the differential heating between the land mass of the Asian continent and the adjacent oceans. The atmospheric response, however, is quite complicated due to the interactions between the atmospheric heat sources, land-sea contrast, and topography, The occurrence of extreme summertime floods in Korea, Japan, and China in 1998 and 1999 has highlighted the range of variability of the East Asian summertime monsoon circulation and spurred interest in investigating the cause of such extreme variability. While ENSO is often considered a prime mechanism responsible for the unusual hydrological disasters in East Asia, understanding of the connection between ENSO and the East Asian monsoon is hampered by their dynamic complexities. Along with a recent phenomenon of weather abnormalities observed in many parts of the globe, Korea has seen its share of increased weather abnormalities such as the record-breaking heavy rainfalls due to a series of flash floods in the summers of 1998 and 1999, following devastating Yangtze river floods in China. A clear regime shift is found in the tropospheric mean temperature in the northern hemisphere middle latitudes and the surface temperature over the Asian continent during the summer with a sudden warming since 1977. Either decadal climate variation or climate regime shift in the Asian continent is evident and may have altered the characteristics of the East Asian summer monsoon. Considering the summertime rainfall amount in Korea is overall increased lately, the 1998/99 heavy rainfalls may not be isolated episodes related only to ENSO, but could be a part of long-term climate variation. The record-breaking heavy summer rainfalls in Korea may not be direct impact of ENSO. Instead, the effects of decadal climate variation and ENSO may be coupled to each other and also to the East Asian summer monsoon system, while their individual impacts are difficult to separate.

  • PDF

Impact of Horizontal Resolution of Regional Climate Model on Precipitation Simulation over the Korean Peninsula (지역 기후 모형을 이용한 한반도 강수 모의에서 수평 해상도의 영향)

  • Lee, Young-Ho;Cha, Dong-Hyun;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.387-395
    • /
    • 2008
  • The impact of horizontal resolution on a regional climate model was investigated by simulating precipitation over the Korean Peninsula. As a regional climate model, the SNURCM(Seoul National University Regional Climate Model) has 21 sigma layers and includes the NCAR CLM(National Center for Atmospheric Research Community Land Model) for land-surface model, the Grell scheme for cumulus convection, the Simple Ice scheme for explicit moisture, and the MRF(Medium-Range Forecast) scheme for PBL(Planetary Boundary Layer) processing. The SNURCM was performed with 20 km resolution for Korea and 60 km resolution for East Asia during a 20-year period (1980-1999). Although the SNURCM systematically underestimated precipitation over the Korean Peninsula, the increase of model resolution simulated more precipitation in the southern region of the Korean Peninsula, and a more accurate distribution of precipitation by reflecting the effect of topography. The increase of precipitation was produced by more detailed terrain data which has a 10 minute terrain in the 20 km resolution model compared to the 30 minute terrain in the 60 km resolution model. The increase in model resolution and more detailed terrain data played an important role in generating more precipitation over the Korean Peninsula. While the high resolution model with the same terrain data resulted in increasing of precipitation over the Korean Peninsula including the adjoining sea, the difference of the terrain data resolution only influenced the precipitation distribution of the mountainous area by increasing the amount of non-convective rain. In conclusion, the regional climate model (SNURCM) with higher resolution simulated more precipitation over the Korean Peninsula by reducing the systematic underestimation of precipitation over the Korean Peninsula.

The Performance Assessment of Special Observation Program (ProbeX-2009) and the Analysis on the Characteristics of Precipitation at the Ulleungdo (울릉도 특별관측 수행평가 및 강수특성 분석)

  • Kim, Ki-Hoon;Kim, Yeon-Hee;Kim, Do-Woo;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.185-196
    • /
    • 2011
  • The performance assessment in radiosonde observation on the special observation program (ProbeX-2009) is performed and the characteristics of precipitation using Auto Weather System (AWS) and radiosonde data in 2009 at the Ulleungdo are investigated. The launching time, observation time, and maximum altitude of radiosonde are satisfied with the regulation from Korea Meteorological Administration (KMA) and World Meteorological Organization (WMO) but the duration of observational time of radiosonde is much shorter than that of the ProbeX-2007 because the altitude of launching site is higher than others in 2007. From the analysis of trajectories of radiosonde, most radiosondes at the Ulleungdo tend to move into the east because the westerly prevail at the middle latitude. However, when the Okhotsk high is expanded to the Korean peninsula and the north-westerly winds strengthen over the East Sea as the subtropical high is retreated, radiosonde tends to move into the south-west and south-east, respectively. Maximum distance appears at the end of observation level before May but the level of maximum distance is changed into 100 hPa after June because the prevailing wind direction is reversed from westerly to easterly at the stratosphere during summer time. The condition of precipitation was more correlated with the dynamic instability except Changma season. Precipitation in 2009 at the Ulleungdo occurred under the marine climate so that total precipitation amounts and precipitation intensity were increased and intensified during nighttime. The local environment favorable for the precipitation during nighttime was while the wind speed at the surface and the inflow from the shoreline were strengthened. Precipitation events also affected by synoptic condition but the localized effect induced by topography was more strengthened at the northern part of Ulleungdo.

Study on Mechanisms and Orographic Effect for the Springtime Downslope Windstorm over the Yeongdong Region (봄철 영동 지역 국지 하강풍 메커니즘과 지형 효과에 대한 연구)

  • Kim, Jung-Hoon;Chung, Il-Ung
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.67-83
    • /
    • 2006
  • The statistical analysis for the springtime windstorm in Korea shows that Yeongdong region has the highest occurrence frequency during recent 10 years. The objective of this study is to find possible mechanisms for the downslope windstorm formation in the Yeongdong region by using a mesoscale numerical model, WRF. Dynamical process, wave breaking (hereafter WB), is qualitatively investigated as the candidate mechanism for a windstorm event occurred in 5 April, 2005. WB is developed in upper troposphere downstream, since stable air is lifted by the Taebaek mountain. This process can cause and maintain the severe downslope windstorm by drawing the upper flow down to the surface. And the intensified downslope wind leads the hydraulic jump (hereafter HJ) in downstream region. Froude numbers at Chuncheon (upslope side), Seorak Mountain (crest), Yangyang (lee side), and the East Sea (distant downstream position) are estimated by about 0.4, 1.0, 1.6, and 0.6, respectively. This result implies that the accelerated and supercritical (Fr>1) flow adjusts to the ambient subcritical (Fr<1) conditions in the turbulent HJ. In addition, we find the formation of upstream inversion near top level of the mountain cause the intensification of HJ. Experiments to examine the orographic effect on the mechanisms suggest that the magnitudes of WB and HJ are larger in the experiment of higher topography, but there is no significant difference of windstorm magnitude among the experiments. Another important result from these sensitivity experiments is that the intensity of downslope windstorm strongly depends on the magnitude of upper (2~4 km) wind in upstream side.

Topography, Vertical and Horizontal Deformation In the Sulzberger Ice Shelf, West Antarctica Using InSAR

  • Kwoun Oh-Ig;Baek Sangho;Lee Hyongki;Sohn Hong-Gyoo;Han Uk;Shum C. K.
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • We construct improved geocentric digital elevation model (DEM), estimate tidal dynamics and ice stream velocity over Sulzberger Ice Shelf, West Antarctica employing differential interferograms from 12 ERS tandem mission Synthetic Aperture Radar (SAR) images acquired in austral fall of 1996. Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles acquired in the same season as the SAR scenes in 2004 are used as ground control points (GCPs) for Interferometric SAR (InSAR) DEM generation. 20 additional ICESat profiles acquired in 2003-2004 are then used to assess the accuracy of the DEM. The vertical accuracy of the OEM is estimated by comparing elevations with laser altimetry data from ICESat. The mean height difference between all ICESat data and DEM is -0.57m with a standard deviation of 5.88m. We demonstrate that ICESat elevations can be successfully used as GCPs to improve the accuracy of an InSAR derived DEM. In addition, the magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7cm and it agrees well within 3cm with predicted ones from tide models. Lastly, ice surface velocity is estimated by combining speckle matching technique and InSAR line-of-sight measurement. This study shows that the maximum speed and mean speed are 509 m/yr and 131 m/yr, respectively. Our results can be useful for the mass balance study in this area and sea level change.

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시.공간 변화)

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.101-104
    • /
    • 2006
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that can explain ElNINO effect to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpola. Front (SPF) dividing into the north and south part of the East sea, the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF,SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong '-' value, where KF had strong '+' value. The time of '+' and '-' value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking '+' value which time was March and October That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험 직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시${\cdot}$공간 변화)

  • Yoon, Hong-Joo;Byun, Hye-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.397-402
    • /
    • 2005
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that tan explain EININO effort to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) dividing into the north and south part of the East sea , the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF, SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong'-'value, where KF had strong'+'value. The time of'+'and'-'value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking'+'value which time was March and October. That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF