• Title/Summary/Keyword: Sea Surface Temperature (SST)

Search Result 345, Processing Time 0.026 seconds

On Annual Variations of Sea Water and Air Temperatures, and Sea-Air Temperature Separation in the East Sea (Japan Sea) (동해의 수온, 기온 및 해면 온도차의 연변화)

  • KANG Yong Q.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.4
    • /
    • pp.374-380
    • /
    • 1985
  • The annual variations of sea surface temperature (SST), air temperature (AT), and sea-air temperature separation (SST-AT) in the East Sea (Japan Sea) are studied by harmonic analysis of the monthly data in 2 by 2 degree rectangles. In the Tsushima Current region of the Japan Sea, the annual means of SST and AT are high due to warm water advection by the current, and the annual amplitudes of SST and AT are small because the annual variations of heat advection the the current and of the incoming solar radiation are almost out of phase each other. In summer the SST and the AT in the Japan Sea are almost the same, but in winter the SST is $6{\sim}10^{\circ}C$ higher than the AT. The physical processes responsible for the observed SST-AT in the Japan Sea and their consequences in the sea-air thermal interactions are discussed in this paper.

  • PDF

Warming Trend of Coastal Waters of Korea during Recent 60 Years (1936-1995)

  • Kang Yong Q.
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.3_4
    • /
    • pp.173-179
    • /
    • 2000
  • Recent changes in the coastal sea surface temperatures (SST) in Korea are studied by time series analysis of daily SST data during the last 60 years (1936-1995) at 18 coastal observation stations of the National Fisheries Research and Development Institute. The climate of coastal SST in Korea are rapidly changing in recent years. General trends of coast SST changes in Korea are as follows. The annual averages of SST are increasing. The annual ranges of SST variation are decreasing. The winter SST are increasing while the summer SST have a decreasing tendency. Climatic changes in coastal SST in recent 30 years (1965-1995) are more pronounced than those in the last 60 years (1936-1995). The observed trend of coast SST implies that the climate in Korea shows a tendency to shift from temperate zone to subtropical zone.

  • PDF

Establishment of Thermal Infrared Observation System on Ieodo Ocean Research Station for Time-series Sea Surface Temperature Extraction (시계열 해수면온도 산출을 위한 이어도 종합해양과학기지 열적외선 관측 시스템 구축)

  • KANG, KI-MOOK;KIM, DUK-JIN;HWANG, JI-HWAN;CHOI, CHANGHYUN;NAM, SUNGHYUN;KIM, SEONGJUNG;CHO, YANG-KI;BYUN, DO-SEONG;LEE, JOOYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.57-68
    • /
    • 2017
  • Continuous monitoring of spatial and temporal changes in key marine environmental parameters such as SST (sea surface temperature) near IORS (Ieodo Ocean Research Station) is demanded to investigate the ocean ecosystem, climate change, and sea-air interaction processes. In this study, we aimed to develop the system for continuously measuring SST using a TIR (thermal infrared) sensor mounted at the IORS. New SST algorithm is developed to provide SST of better quality that includes automatic atmospheric correction and emissivity calculation for different oceanic conditions. Then, the TIR-based SST products were validated against in-situ water temperature measurements during May 17-26, 2015 and July 15-18, 2015 at the IORS, yielding the accuracy of 0.72-0.85 R-square, and $0.37-0.90^{\circ}C$ RMSE. This TIR-based SST observing system can be installed easily at similar Ocean Research Stations such as Sinan Gageocho and Ongjin Socheongcho, which provide a vision to be utilized as calibration site for SST remotely sensed from satellites to be launched in future.

Relationships between the Winter-Time Surface Water Temperature and the Summer-Time Bottom Water Temperature in the West Sea of Korea (서해의 겨울철 표면수온과 여름철 저층수온과의 관계)

  • 강용균;김호균
    • 한국해양학회지
    • /
    • v.22 no.4
    • /
    • pp.228-235
    • /
    • 1987
  • Based on the hydrographic data for 19 years (1968-1984) at 65 stations in the West Sea of Korea, we investigate the relationships between the sea surface temperature (SST) in winter and the bottom water temperature (BWT) in summer. The spatially-averaged anomalies of BBT are highly correlated with those of SST during the preceding winter. However, due to advection of heat by ocean currents, the spatial pattern of BWT anomaly in summer does not closely resemble that of SST anomaly in the preceding winter.

  • PDF

Spatial relationship between distribution of common minke whale (Balaenoptera acutorostrata) and satellite sea surface temperature observed in the East Sea, Korea in May from 2003 to 2020 (2003-2020년 5월 한국 동해안 밍크고래(Balaenoptera acutorostrata) 분포와 위성 표층수온과의 공간적 관계)

  • YAMADA, Keiko;YOO, Joon-Taek
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.281-287
    • /
    • 2022
  • The distributions of common minke whales observed in the East Sea in ten surveys in May of 2003, 2005, 2006, 2007, 2009, 2010, 2012, 2015, 2016 and 2020 were investigated using satellite sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectrometer (MODIS). Most of the minke whales were observed in the waters off the Korean Peninsula at 36-38.5° N, which is expected as the highly productive coastal upwelling area. Yet, no minke whale was observed in 2006 when a relatively larger scale coastal upwelling occurred with SST at 11℃. In 2016 and 2020, the warm water higher than 17℃ extended widely in the area, and the minke whales were observed in the offshore waters, deeper than 1,000 m. 87.5% of minke whales observed in May appeared in the SST from 13 to 16℃, and they seemed to avoid relatively high temperatures. This suggests that optimum habitat water temperature of minke whales in May is 13-16℃. The SST in the area had risen 1.67℃ from 2003 to 2021, and it was remarkably higher than in other parts of the surrounding areas. The future temperature rising may change the route and timing of the migration of minke whales in the study area.

Extraction of Sea Surface Temperature in Coastal Area Using Ground-Based Thermal Infrared Sensor On-Boarded to Aircraft (지상용 열적외선 센서의 항공기 탑재를 통한 연안 해수표층온도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin;Kim, Seung Hee;Cho, Yang-Ki;Lee, Sang-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.797-807
    • /
    • 2014
  • The Sea Surface Temperature (SST) is one of the most important oceanic environmental factors in determining the change of marine environments and ecological activities. Satellite thermal infrared images can be effective for understanding the global trend of sea surface temperature due to large scale. However, their low spatial resolution caused some limitations in some areas where complicated and refined coastal shapes due to many islands are present as in the Korean Peninsula. The coastal ocean is also very important because human activities interact with the environmental change of coastal area and most aqua farming is distributed in the coastal ocean. Thus, low-cost airborne thermal infrared remote sensing with high resolution capability is considered for verifying its possibility to extract SST and to monitor the changes of coastal environment. In this study, an airborne thermal infrared system was implemented using a low-cost and ground-based thermal infrared camera (FLIR), and more than 8 airborne acquisitions were carried out in the western coast of the Korean Peninsula during the periods between May 23, 2012 and December 7, 2013. The acquired thermal infrared images were radiometrically calibrated using an atmospheric radiative transfer model with a support from a temperature-humidity sensor, and geometrically calibrated using GPS and IMU sensors. In particular, the airborne sea surface temperature acquired in June 25, 2013 was compared and verified with satellite SST as well as ship-borne thermal infrared and in-situ SST data. As a result, the airborne thermal infrared sensor extracted SST with an accuracy of $1^{\circ}C$.

Spatial and Monthly Changes of Sea Surface Temperature, Sea Surface Salinity, Chlorophyll a, and Zooplankton Biomass in Southeastern Alaska: Implications for Suitable Conditions for Survival and Growth of Dungeness Crab Zoeae

  • Park, Won-Gyu
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.133-142
    • /
    • 2007
  • To investigate conditions for the survival and growth of Dungeness crab zoeae in situ, spatial and monthly changes of sea surface temperature (SST), sea surface salinity (SSS), Chlorophyll ${\alpha}$ (Chl ${\alpha}$), and zooplankton biomass were measured in four transects: upper Chatham, Icy Strait, Cross Sound, and Icy Point in southeastern Alaska from May to September, 1997-2004. Monthly mean SST was coldest in May, increased throughout the summer months, and decreased in September. SST was coldest in the Cross Sound transect, intermediate in the upper Chatham and Icy Strait transects, and warmest in the Icy Point transect. SSS of northern stations in the upper Chatham and Icy Strait transects decreased throughout the summer months and increased in September, while that of other transects did not vary. Monthly mean Chl ${\alpha}$ was highest in May and decreased thereafter. Chl ${\alpha}$ in the upper Chatham and Icy Strait transects were relatively higher from May through September than those in the Cross Sound and Icy Point transects. Mean zooplankton biomass was highest in the Icy Strait transect in May and lowest in the Icy Point transect in September. This research suggests that oceanographic conditions during the season of Dungeness crab zoeae in southeastern Alaska may not constrain the survival and growth of Dungeness crab zoeae.

Past sea surface temperature of the East Sea inferred from alkenone

  • Lee, Kyung-Eun;Kim, Kyung-Ryul
    • Journal of the korean society of oceanography
    • /
    • v.37 no.1
    • /
    • pp.27-34
    • /
    • 2002
  • We measured the alkenone concentration of bulk sediments from a piston core collected from the Ulleung Basin in the East Sea in order to reconstruct past sea surface temperatures (SST). Sediment ages are well constrained by AMS $^{14}C$ dates of the planktonic foraminifera Globigerina bulloides. Coretop alkenone SST calibration with modern surface temperatures and sediment trap dat (Hong et al., 1996) indicate that the SST estimated from alkenones most likely represent the temperatures of late fall. Downcore variations in the alkenone saturation index indicate that between 19 and 15 kyr BP the surface waters were about $3^{\circ}C$ warmer than today. Between 15 and 11 kyr BP, the temperatures were about $3^{\circ}C$ lower than today. A rapid SST increase of about $3^{\circ}C$ occurred at approximately 10 kyr BP. After considering the factors which might influence the SST reconstruction from the $U^{k'}_{37}$ values, we conclude that the alkenone temperature estimates are reliable. The reason for glacial warming in the East Sea is not clear, although there is a possibility that it could be caused by shift in the season of maximum alkenone production from summer during the last glaciation to late fall during the Holocene. Cooling between 15 and 11 kyr BP may be due to inflow of cold water into the East Sea such as via the Oyashio Current or ice-melt water. Warming at the early Holocene could be due to inflow of the Tsushima Current into the East Sea through the Korea Strait.

Fluctuations and Time Series Forecasting of Sea Surface Temperature at Yeosu Coast in Korea (여수연안 표면수온의 변동 특성과 시계열적 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun Ho;Jeon, Sang-Back
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • Seasonal variations and long term linear trends of SST (Sea Surface Temperature) at Yeosu Coast ($127^{\circ}37.73^{\prime}E$, $34^{\circ}37.60^{\prime}N$) in Korea were studied performing the harmonic analysis and the regression analysis of the monthly mean SST data of 46 years (1965-2010) collected by the Fisheries Research and Development Institute in Korea. The mean SST and the amplitude of annual SST variation show $15.6^{\circ}C$ and $9.0^{\circ}C$ respectively. The phase of annual SST variation is $236^{\circ}$. The maximum SST at Yeosu Coast occurs around August 26. Climatic changes in annual mean SST have had significant increasing tendency with increase rate $0.0305^{\circ}C/Year$. The warming trend in recent 30 years (1981-2010) is more pronounced than that in the last 30 years (1966-1995) and the increasing tendency of winter SST dominates that of the annual SST. The time series model that could be used to forecast the SST on a monthly basis was developed applying Box-Jenkins methodology. $ARIMA(1,0,0)(2,1,0)_{12}$ was suggested for forecasting the monthly mean SST at Yeosu Coast in Korea. Mean absolute percentage error to measure the accuracy of forecasted values was 8.3%.

Relationship between Sea Surface Temperature derived from NOAA Satellites and Cochlodinium polykrikoides Red Tide occurrence in Korean Coastal Waters (NOAA 위성자료에 의한 해수표면 수온분포와 Cochlodinium polykrikoides 적조 발생의 상관성)

  • Suh, Young-Sang;Kim, Jeong-Hee;Kim, Hak-Gyoon
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.215-221
    • /
    • 2000
  • The relationship between the distribution of sea surface temperature(SST) and dinoflagellate(Cochlodinium polykrikoides) bloom areas were studied. The SST data were derived from the infrared channels of AVHRR(Advanced Very High Resolution Radiometer) sensor on NOAA(National Oceanic and Atmospheric Administration) 12 and 14 satellites during 1995-1998. The initial water temperature at C. polykrikoides bloom was about 21${\circ}C$ at the coastal areas of the South Sea and along the shore of the East Sea of Korea during the summer season of 1995. The northern limit of red tides was coincident with that of 21${\circ}C$ isothermal line in the East Sea. The red tides that initially bloomed at the coast of Pohang on September 21, 1995 moved to the coast of Uljin on September 26, 1995. The skipped appearance of the red tides in the areas between Pohang and Uljin was due to the East Korean Warm Current, which was moving offshore from Pohang to approach to Uljin. The cold water which was formed by tidal front in the western coast of the South Sea and by upwelling water from deep layer in the southeastern coast of the Korean peninsula played a role in blocking the spreading of red tides during summer season in 1997 and 1998. In conclusion, the distribution of red tides appeared to be dependent on the initial water temperature at red tides bloom. The SST at the red tides varied from 21${\circ}C$ to 25${\circ}C$; 21${\circ}C$, 23${\circ}C$, 24 and 24-25${\circ}C$ in 1995, 1996, 1997 and 1998, respectively.

  • PDF