• Title/Summary/Keyword: Sea

Search Result 18,017, Processing Time 0.047 seconds

Analysis of Foodborne Pathogens in Food and Environmental Samples from Foodservice Establishments at Schools in Gyeonggi Province (경기지역 학교 단체급식소 식품 및 환경 중 식중독균 분석)

  • Oh, Tae Young;Baek, Seung-Youb;Koo, Minseon;Lee, Jong-Kyung;Kim, Seung Min;Park, Kyung-Min;Hwang, Daekeun;Kim, Hyun Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1895-1904
    • /
    • 2015
  • Foodborne illness associated with food service establishments is an important food safety issue in Korea. In this study, foodborne pathogens (Bacillus cereus, Clostridium perfringens, Escherichia coli, pathogenic Escherichia coli, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Vibrio parahaemolyticus) and hygiene indicator organisms [total viable cell counts (TVC), coliforms] were analyzed for food and environmental samples from foodservice establishments at schools in Gyeonggi province. Virulence factors and antimicrobial resistance of detected foodborne pathogens were also characterized. A total of 179 samples, including food (n=66), utensil (n=68), and environmental samples (n=45), were collected from eight food service establishments at schools in Gyeonggi province. Average contamination levels of TVC for foods (including raw materials) and environmental samples were 4.7 and 4.0 log CFU/g, respectively. Average contamination levels of coliforms were 2.7 and 4.0 log CFU/g for foods and environmental swab samples, respectively. B. cereus contamination was detected in food samples with an average of 2.1 log CFU/g. E. coli was detected only in raw materials, and S. aureus was positive in raw materials as well as environmental swab samples. Other foodborne pathogens were not detected in all samples. The entire B. cereus isolates possessed at least one of the diarrheal toxin genes (hblACD, nheABC, entFM, and cytK enterotoxin gene). However, ces gene encoding emetic toxin was not detected in B. cereus isolates. S. aureus isolates (n=16) contained at least one or more of the tested enterotoxin genes, except for tst gene. For E. coli and S. aureus, 92.7% and 37.5% of the isolates were susceptible against 16 and 19 antimicrobials, respectively. The analyzed microbial hazards could provide useful information for quantitative microbial risk assessment and food safety management system to control foodborne illness outbreaks in food service establishments.

The Outbreak of Red Tides in the Coastal Waters off Kohung, Chonnam, Korea 3. The Temporal and Spatial Variations in the Heterotrophic Dinoflagellates and Ciliates in 1997 (전남 고흥 해역의 유해성 적조의 발생연구 3. 1997년도 종속영향성 와편모류와 섬모류의 시공간적 변화)

  • Jeong, Hae-Jin;Park, Jong-Kyu;Kim, Jae-Seong;Kim, Seong-Taek;Yoon, Joo-Eh;Kim, Su-Kyeong;Park, Yong-Min
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.37-46
    • /
    • 2000
  • We investigated the temporal and spatial variations in heterotrophic dinoflagellates (hereafter HTD) and ciliates from June to September 1997 in the waters off Kohung, Korea where red tides dominated by harmful dinoflagellates had occurred from August to October since 1995. We took water samples five times from 5-7 depths at 3 stations in this study period. A total of 17 HTD species were present and of these species in the genus Protoperidinium were 11. The species number of tintinnids (hereafter TIN) present totalled 15 and several naked ciliate (hereafter NC) species were observed. The species numbers of HTD and TIN rapidly increased between August 1st and 21st and then reached to the maximum numbers of 13 and 10, respectively, on August 27 when red tides dominated by Gyrodinium impudicum were first observed in the study area. However the species numbers drastically decreased on September 22. The maximum densities of HTD, TIN, and NC were 45, 39, 57 cells $ml^{-1}$, respectively. ADAS, calculated by averaging the densities of a certain species in the all samples collected from all depths and stations at a sampling period, most increased between August 1st and 21st and then reached to the maximum density of f cells $ml^{-1}$ on August 27 for HTD, while did between August 21st and 27th and up to 7 cells $ml^{-1}$ for TIN. Unlike ADAS of HTD and TIN, that of NC did not change much with the maximum of 8 cells $ml^{-1}$ on August 27th. The pattern of the temperal variation in the species number and ADAS of HTD was similar to that of diatoms and the distributions of Protoperidinium spp. and diatoms had a strong positive correlation. This evidence suggests that HTD, in particular Protoperidinium spp. be a grazer on diatom. In general, the densities of HTD, TIN, and NC decreased with going to stations located in the outer bay. Therefore, the availability of suitable prey and distance from the coastal line might be responsible for the distribution of HTD, TIN, and NC. The results of the present study provide a basis for further experiments for the feeding by dominant HTD, TIN, and NC on dominant phytoplankton including red tide species and for understanding food webs in the planktonic community before, during, and after the red tide outbreak.

  • PDF

Summer-Time Behaviour and Flux of Suspended Sediments at the Entrance to Semi-Closed Hampyung Bay, Southwestern Coast of Korea (만 입구에서 부유퇴적물 거동과 플럭스: 한반도 서해 남부 함평만의 여름철 특성)

  • Lee, Hee-Jun;Park, Eun-Sun;Lee, Yeon-Gyu;Jeong, Kap-Sik;Chu, Yong-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 2000
  • Anchored measurements (12.5 hr) of suspended sediment concentration and other hydrodynamic parameters were carried out at two stations located at the entrance to Hampyung Bay in summer (August 1999). Tidal variations in water temperature and salinity were in the range of 26.0-27.9$^{\circ}C$ and 30.9-31.5, respectively, indicating exchange offshore and offshore water mass. Active tidal mixing processes at the entrance appear to destroy the otherwise vertical stratification in temperature and salinity in spite of strong solar heating in summer. On the contrary, suspended sediment concentrations show a marked stratification with increasing concentrations toward bottom layer. Clastic particles in suspended sediments consist mostly of very fine to fine silt (4-16 ${\mu}$m) with a poorly-sorted value of 14.7-25.9 ${\mu}$m. However, at slack time with less turbulent energy, flocs larger than 40 ${\mu}$m are formed by cohesion and inter-collision of particles, resulting in a higher settling velocity. Strong ebb-dominated and weak flood dominated tidal currents, in the southwestern and the northeastern part, respectively, result in a seaward residual flow of -10${\sim}$-20 cm $s^{-1}$ at station H1 and a bayward residual flow less than 5.0 cm $s^{-1}$ at station H2. However, mean concentration of suspended sediments at station H1 is higher at flood (95.0-144.1 mg $1^{-1}$) than in ebb (75.8-120.9 mg $1^{-1}$). On the contrary, at the station H2, the trend is reversed with higher concentration at the ebb (84.7-158.4 mg $1^{-1}$) than that at the flood (53.0-107.9 mg $1^{-1}$). As a result, seaward net suspended sediment fluxes ($f_{s}$) are calculated to be -1.7 ${\sim}$-$15.610^{3}$ kg $m^{-2}$ $s^{-1}$ through the whole water column. However, the stations H1 and H2 show definitely different values of the flux with higher ones in the former than in the latter. Alternatively, depth-integrated net suspended sediment loads ($\c{Q}_{s}$) for one tidal cycle are also toward the offshore with ranges of 0.37${\times}$$10^{3}$ kg $m^{-1}$ and 0.21${\times}$$10^{3}$ kg $m^{-1}$, at station H1 and H2, respectively. This seaward transport of suspended sediment in summer suggests that summer-time erosion in the Hampyung muddy tidal flats is a rather exceptional phenomenon compared to the general deposition reported for many other tidal flats on the west coast of Korea.

  • PDF

Determination of the Optimum Sampling Area for the Benthic Community Study of the Songdo Tidal Flat and Youngil Bay Subtidal Sediment (송도 갯벌과 영일만 조하대 저서동물의 군집조사를 위한 적정 채집면적의 결정)

  • Koh, Chul-Hwan;Kang, Seong-Gil;Lee, Chang-Bok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.63-70
    • /
    • 1999
  • The optimum sampling area which can be applied to the benthic community study is estimated from large survey data in the Songdo tidal flat and subtidal zone of Youngil Bay, Korea. A total of 250 samples by 0.02 $m^2$ box corer for the benthic fauna in Songdo tidal flat and 50 samples by 0.1 $m^2$ van Veen grab in Youngil Bay were taken from the total sampling area of 5 $m^2$. It was assumed that the sampling area could contain sufficient information on sediment fauna, if cumulative number of species, ecological indices, and similarity index by cluster analysis reflect the similarity level of 75% to those found at total sampling area (5 $m^2$). A total of 56 and 60 species occurred from Songdo tidal flat and Youngil Bay, respectively. The cumulative curve of the species number ($N_{sp}$) as a function of the sampling area (A in $m^2$ ) was fitted as $N_{sp}=37.379A^{0.257}$ ($r^2=0.99$) for intertidal fauna and $N_{sp}=40.895A^{0.257}$ ($r^2=0.98$) for subtidal fauna. Based on these curves and 75% of similarity to the total sampling area (5 $m^2$), the optimum sampling area was proposed as 1.6 $m^2$ for the intertidal and 1.5 $m^2$ for the subtidal fauna. Ecological indices (species diversity, richness, evenness and dominance indices) were again calculated on the basis of species composition in differently simulated sample sizes. Changes in ecological indices with these sample sizes indicated that samplings could be done by collecting fauna from < 0.5 $m^2$-1.5 $m^2$ on the Songdo tidal flat and from < 0.5 $m^2$-1.2 $m^2$ in Youngil Bay. Changes in similarity level of all units of each simulated sample size showed that sampling area of 0.3 $m^2$ (Songdo tidal flat) and 0.6 $m^2$ (Youngil Bay) should be taken to obtain a similarity level of 75%. In conclusion, sampling area which was determined by cumulative number of species, ecological indices and similarity index by cluster analysis could be determined as 1.5 $m^2$ (0.02 $m^2$ box corer, n=75) for Songdo tidal flat and 1.2 $m^2$ (0.1 $m^2$ van Veen grab, n=12) for Youngil Bay. If these sampling areas could be covered in the field survey, population densities of seven dominant species comprising 68% of the total faunal abundance occurring on Songdo tidal flat and six species comprising 90% in Youngil Bay can be estimated at the precision level of P=0.2.

  • PDF

Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks (포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代))

  • Lee, Hyun Koo;Moon, Hi-Soo;Min, Kyung Duck;Kim, In-Soo;Yun, Hyesu;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF

The Content of Minerals in Algae (해조류(海藻類)의 무기성분(無機成分))

  • Lee, Jong-Ho;Sung, Nak-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.9 no.1
    • /
    • pp.51-58
    • /
    • 1980
  • Sixteen species of algae (4 species of green algae, 5 species of brown algae and 7 species of red algae) were collected from the coast of Chungmu, Gyeongnam, from June to October, 1976. The content of minerals in algae were analyzed by Atometic Absorption Spectrophotometer. The results were as followed 1) The content of Iron and Nickel in green algae were abundant, and those of Lead, Nickel and Manganese in brown algae were low. 2) The content of Cadmium were in the range of 0.58-1.04ppm (average: 0.85ppm) in green algae, 0.32-2.10ppm (average: 1.08ppm) in brown algae and 0.54-1.70ppm (average: 1.04ppm) in red algae. The content of Cadmium were in the range of 0.3-0.6ppm in laver, Porphyra tenera, sea mustard, Undaria pinnatifida, and tangle, Laminaria japonica, but its content was lower than those expected. 3) The content of Lead were in the range of 0.67-1.40ppm (average: 1.03ppm) in green algae, 0.60-1.00ppm (average: 0.82ppm) in brown algae, 0.56-2.40ppm (average: 1.28ppm) in red algae and its content in algae were lower than in fish and shellfish. 4) The content of Copper were in the range of 10.8-24.2ppm (average: 18.95ppm) in green algae, 7.4-24.6ppm (average: 18.16ppm) in brown algae, 6.4-31.2ppm (average: 19.94ppm) in red algae and those content were considerably abundant except for some algae. 5) The content of Nickel were in the range of 5.4-16.6ppm (average: 9.1ppm) in green algae, 1.0-4.4ppm (average: 2.32ppm) in brown algae and 0.7-4.6ppm (average: 2.59ppm) in red algae. 6) The content of Iron were in the range of 686.4-1159.0ppm (average: 916.5ppm) in green algae, 131.0-499.2ppm (average: 310.16ppm) in brown algae and 156.0-530.4ppm (average: 248.2ppm) in red algae. Especially, that of Iron in green algae showed higher value than in any other. 7) The content of Manganese were in the range of 48-221ppm (average: 157.25ppm) in green algae, 12-65ppm (average: 41ppm) in brown algae and 72-162ppm (average: 121ppm) in red algae. Especially, that of Manganese in brown algae showed lower value than in any other. 8) The content of Zinc were in the range of 191.3-451.1ppm (average: 290.05ppm) in green algae, 89.9-374.2ppm (average: 202.64ppm) in brown algae and 106.4-281.4ppm (average: 188.93ppm) in red algae. 9) The content of Magnesium were in the range of 0.48-1.83% (average: 1.27%) in green algae, 1.04-1.71% (average: 1.21%) in brown algae and 0.42-1.24% (average: 0.097%) in red algae. 10) The content of Fluorine were in the range of 29.2-92.7ppm (average: 53.03ppm) in green algae, 33.3-43.5ppm (average: 39.18ppm) in brown algae and 32.4-59.0ppm (average: 44.84ppm) in red algae.

  • PDF

Comparative Evaluation of Dietary Intakes of Calcium, Phosphorus, Iron, and Zinc in Rural, Coastal, and Urban District (농촌, 어촌, 도시 지역별 칼슘, 인, 철, 아연의 섭취상태 비교평가)

  • Choi, Mi-Kyeong;Kim, Hyun-Sook;Lee, Won-Young;Lee, Hyomin;Ze, Keum-Ryon;Park, Jung-Duck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.659-666
    • /
    • 2005
  • The purpose of this study was to compare the intake status of calcium, phosphorus, iron, and zinc of Korean adults residing in different regions. Subjects were recruited and divided into three groups according to the districts where they lived, which included rural (n=137), coastal (n=100), and urban district (n=117). Subjects were interviewed using a general questionnaire and 24-hour recall method for dietary intake. The average age of the subjects were 58.1 years for rural district, 57.7 years for coastal district, and 48.6 years for urban district. There was no significance in total food intake by regions. The food intakes from cereals, mushrooms, vegetables of rural district, that from fishes of coastal district, and those from sugars, milks, oils of urban area were the highest among three districts. The calcium, phosphorus, iron, and zinc intakes were $60.1\%,\;123.9\%,\;95.2\%,\;and\;73.1\%$ of RDAs, respectively. The calcium intakes as percentage of RDA in rural and coastal district were significantly (p<0.01) lower than that in urban district. A larger number of subjects from coastal or urban district ate under $75\%$ of zinc RDA compared to those from rural village. Major sources of dietary calcium in total subjects were anchovy, kimchi, milk, soybean curd, rice, ice cream, sea mustard, yogurt, loach, and welsh onion. Rice supplied $15.5\%$ for phosphorus, $22.1\%$ for iron, and $35.9\%$ for zinc of total intake. Except for rice, major sources of dietary zinc were pork, beef, small red bean, dog meat, chicken, jacopever, soybean curd, glutinous millet, and kimchi. In conclusion, the food and mineral intakes of adults differed according to the regions in which they resided. The food and nutrient intakes of coastal district were not satisfactory, and calcium and zinc intakes of three regions did not meet RDAs. Therefore, it is required unique and discriminatory nutritional education with each region for increasing intakes of calcium and zinc.

Studies on a Plan for Afforestation at Tong-ri Beach Resort(II) -Analyses of Crown Amounts and Soil Properties in the Disaster-damage Prevention Forests of Pinus thunbergii PARL., the Valuation on Soil Properties for Planting and Planning for Afforestation- (통리(桶里) 해수욕장(海水浴場) 녹지대(綠地帶) 조성(造成)에 관(關)한 연구(硏究)(II) -곰솔 해안방재림(海岸防災林)의 수관량(樹冠量) 및 토양분석(土壤分析), 식재기반평가(植栽基盤評價) 및 녹지대계획(綠地帶計劃)-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.3
    • /
    • pp.303-314
    • /
    • 1988
  • Tong-ri beach has not enough vegetation to be enjoyed by the sea bathers and to be satisfied with preventing the disaster-damages, but mixed forest near the beach can work its funtions and the old forest of Pirus thunbergii $P_{ARL}$. near the beach do a Little. Therefore it is very urgent to plant more trees near the beach for bathers and disaster-damage prevention. This study was carried out for planning an afforestation, with reporting upon the crown amounts and soil properties of disaster-damage prevention forests of P. thunbergii $P_{ARL}$. planted on the coast sand dunes in 1970 and 1976, and with reporting upon the valuation on soil properties of the lands near the beach in order to set the afforestation site. The results are as follows : 1. In disaster-damage prevention forests, crown surface area and crown volume became increasingly greater in proportion to the height. To D.B.H., crown volume also became increasingly greater in proportion, but crown surface area was directly proportional. 2. In comparison to sail characteristics of sand dune, those of the forests were in large quantity in OM, T-N and avail. $SiO_2$, and almost in the same in avail. $P_2O_5$, but in small quantity in exchangeable canons : K, Ca, Mg and Na. 3. EC, Cl and pH were in small value in the forest soils, but CEC was in large value in those soils. 4. Above facts showed that the forests fulfill their functions for preventing disaster-damages and improve their soil properties. 5. The forests have naturally been thinned up to 34% in 17 years and 39% in 11 years, and one can easily pass through the forest(planted in 1970), because of its sufficient clear-length(2.71m) and its space to pass. 6. A plan for afforestation was oracle nut after judging several sites by the evaluation on the soil properties and considering the best relaxation and the prevention of the various disaster-damages upon which were reported in the last issue. 7. Afforestation should be kept for maintaining its appropriate density for best relaxation and disaster-damage prevention.

  • PDF

한강하류지형면의 분류와 지형발달에 대한 연구 (양수리에서 능곡까지)

  • Park, No-Sik
    • Journal of the Speleological Society of Korea
    • /
    • no.68
    • /
    • pp.23-73
    • /
    • 2005
  • Purpose of study; The purpose of this study is specifically classified as two parts. The one is to attempt the chronological annals of Quaternary topographic surface through the study over the formation process of alluvial surfaces in our country, setting forth the alluvial surfaces lower-parts of Han River area, as the basic deposit, and comparing it to the marginal landform surfaces. The other is to attempt the classification of micro morphology based on the and condition premising the land use as a link for the regional development in the lower-parts of Han river area. Reasons why selected the Lower-parts of Han river area as study objects: 1. The change of river course in this area is very serve both in vertical and horizontal sides. With a situation it is very easy to know about the old geography related to the formation process of topography. 2. The component materials of gravel, sand, silt and clay are deposited in this area. Making it the available data, it is possible to consider about not oかy the formation process of topography but alsoon the development history to some extent. 3. The earthen vessel, a fossil shell fish, bone, cnarcoal and sea-weed are included in the alluvial deposition in this area. These can be also valuable data related to the chronological annals. 4. The bottom set conglometate beds is also included in the alluvial deposits. This can be also valuable data related to the research of geomorphological development. 5. Around of this area the medium landform surface, lower landform surface, pediment and basin, are existed, and these enable the comparison between the erosion surfaces and the alluvial surfaces. Approach : 1. Referring to the change of river beds, I have calculated the vertical and horizontal differences comparing the topographic map published in 1916 with that published in 1966 and through the field work 2. In classifying the landform, I have applied the method of micro morphological classification in accordance with the synthetic index based upon the land conditions, and furthermore used the classification method comparing the topographic map published in 1916 and in that of 1966. 3. I have accorded this classification with the classification by mapping through appliying the method of classification in the development history for the field work making the component materials as the available data. 4. I have used the component materials, which were picked up form the outcrop of 10 places and bored at 5 places, as the available data. 5. I have referred to Hydrological survey data of the ministry of Construction (since 1916) on the overflow of Han-river, and used geologic map of Seoul metropolitan area. Survey Data, and general map published in 1916 by the Japanese Army Survbey Dept., and map published in 1966 by the Construction Research Laboratory and ROK Army Survey Dept., respectively. Conclusion: 1. Classification of Morphology: I have added the historical consideration for development, making the component materials and fossil as the data, to the typical consideration in accordance with the map of summit level, reliefe and slope distribution. In connection with the erosion surface, I have divided into three classification such as high, medium and low-,level landform surfaces which were classified as high and low level landform surfaces in past. furthermore I have divided the low level landform surface two parts, namely upper-parts(200-300m) and bellow-parts(${\pm}100m$). Accordingly, we can recognize the three-parts of erosion surface including the medium level landform surface (500-600m) in this area. (see table 22). In condition with the alluvial surfaces I have classified as two landform surfaces (old and new) which was regarded as one face in past. Meamwhile, under the premise of land use, the synthetic, micro morphological classification based upon the land condition is as per the draw No. 19-1. This is the quite new method of classification which was at first attempted in this country. 2. I have learned that the change of river was most severe at seeing the river meandering rate from Dangjung-ni to Nanjido. As you seee the table and the vertical and horizontal change of river beds is justly proportionable to the river meandering rate. 3. It can be learned at seeing the analysis of component materials of alluvial deposits that the component from each other by areas, however, in the deposits relationship upper stream, and between upper parts and below parts I couldn't always find out the regular ones. 4. Having earthern vessel, shell bone, fossil charcoal and and seaweeds includen in the component materials such as gravel, clay, sand and silt in Dukso and Songpa deposits area. I have become to attempt the compilation of chronicle as yon see in the table 22. 5. In according to hearing of basemen excavation, the bottom set conglomerate beds of Dukso beds of Dukso-beds is 7m and Songpa-beds is 10m. In according to information of dredger it is approx. 20m in the down stream. 6. Making these two beds as the standard beds, I have compared it to other beds. 7 The coarse sand beds which is covering the clay-beds of Dukso-beds and Nanjidobeds is shown the existence of so-called erosion period which formed the gap among the alluvial deposits of stratum. The former has been proved by the sorting, bedding and roundness which was supplied by the main stream and later by the branch stream, respectively. 8. If the clay-beds of Dukeo-bed and Songpa-bed is called as being transgressive overlap, by the Eustatic movement after glacial age, the bottom set conglomerate beds shall be called as being regressive overlap at the holocene. This has the closest relationship with the basin formation movement of Seoul besides the Eustatic movement. 9. The silt-beds which is the main component of deposits of flood plain, is regarded as being deposited at the Holocene in the comb ceramic and plain pottery ages. This has the closest relationship with the change of river course and river beds.

The Study on the Debris Slope Landform in the Southern Taebaek Mountains (태백산맥 남부산지의 암설사면지형)

  • Jeon, Young-Gweon
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.77-98
    • /
    • 1993
  • The intent of this study is to analyze the characteristics of distribution, patter, and deposits of the exposed debris slope landform by aerial photography interpretation, measure-ment on the topographical maps and field surveys in the southern part Taebaek mountains. It also aims to research the arrangement types of mountain slope and the landform development of debris slopes in this area. In conclusion, main observations can be summed up as follows. 1. The distribution characteristics 1)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of intrusive rocks with the talus line. 2)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of inrtusive rocks with the talus line. 2) From the viewpoint of distribution altitude, talus is mainly distributed in the 301~500 meters part above the sea level, while the block stream is distributed in the 101~300 meters part. 3) From the viewpoint of slope oriention, the distribution density of talus on the slope facing the south(S, SE, SW) is a little higher than that of talus on the slope facing the north(N, NE, NW). 2. The Pattern Characteristics 1) The tongue-shaped type among the four types is the most in number. 2) The average length of talus slope is 99 meters, especially that of talus composed of hornfels or granodiorite is longer. Foth the former is easy to make free face; the latter is easdy to produce round stones. The average length of block stream slope is 145 meters, the longest of all is one km(granodiorite). 3) The gradient of talus slope is 20~45${^\circ}$, most of them 26-30${^\croc}$; but talus composed of intrusive rocks is gentle. 4) The slope pattern of talus shows concave slope, which means readjustment of constituent debris. Some of the block stream slope patterns show concave slope at the upper slope and the lower slope, but convex slope at the middle slope; others have uneven slope. 3. The deposit characteristics 1) The average length of constituent debris is 48~172 centimeters in diameter, the sorting of debris is not bad without matrix. That of block stream is longer than that of talus; this difference of debris average diameter is funda-mentally caused by joint space of bedrocks. 2) The shape of constituent debris in talus is mainly angular, but that of the debris composed of intrusive rocks is sub-angular. The shape of constituent debris in block stream is mainly sub-roundl. 3) IN case dof talus, debris diameter is generally increasing with downward slope, but some of them are disordered and the debris diameter of the sides are larger than that of the middle part on a landform surface. In block stream, debris diameter variation is perpendicularly disordered, and the debris diameter of the middle part is generally larger than that of the sides on a landform surface. 4)The long axis orientation of debris is a not bad at the lower part of the slope in talus (only 2 of 6 talus). In block stream(2 of 3), one is good in sorting; another is not bad. The researcher thinks that the latter was caused by the collapse of constituent debris. 5) Most debris were weathered and some are secondly weathered in situ, but talus composed of fresh debris is developing. 4. The landform development of debris slopes and the arrangement types of the mountain slope 1) The formation and development period of talus is divided into two periods. The first period is formation period of talus9the last glacial period), the second period is adjustment period(postglacial age). And that of block stream is divided into three periods: the first period is production period of blocks(tertiary, interglacial period), the second formation period of block stream(the last glacial period), and the third adjustment period of block stream(postglacialage). 2) The arrangement types of mountain slope are divided into six types in this research area, which are as follows. Type I; high level convex slope-free face-talus-block stream-alluvial surface Type II: high level convex slope-free face-talus-alluvial surface Type III: free face-talus-block stream-all-uvial surface Type IV: free face-talus-alluval surface Type V: talus-alluval surface Type VI: block stream-alluvial surface Particularly, type IV id\s basic type of all; others are modified ones.

  • PDF