• 제목/요약/키워드: Sea&Air

검색결과 1,158건 처리시간 0.027초

황해 직선 항로상 대기오염물질의 측정 (Shipboard Measurements of Air Pollutants across the Yellow Sea)

  • 이승복;배귀남;진현철;김영성;문길주;심상규
    • 한국대기환경학회지
    • /
    • 제20권1호
    • /
    • pp.33-46
    • /
    • 2004
  • Air pollutants were measured eight times from June 1999 to June 2002 on regular ferries cruising across the Yellow Sea between Incheon in Korea and Qingdao or Tianjin in China. PM$_{10}$ and PM$_{2.5}$ were measured as particulate matters and SO$_2$, CO, and NO$_{x}$ were measured as gaseous pollutants. On each route, sampling was made, starting two hour after departure and ending two hour before arrival. Low concentrations of gaseous pollutants that were not much varied according to sampling period and location revealed that atmosphere over the sea was not directly affected by anthropogenic emissions. However, concentrations of fine particles were generally higher than those measured at Deokjeok Island, 50km west of the western seashore, at similar periods. It was believed that considerable influence of China in the form of secondary pollutants was exerted over the sea.a.a.a.

대기확산의 수치모의에서 SST 효과 (SST Effect upon Numerical Simulation of Atmospheric Dispersion)

  • 이화운;원경미;조인숙
    • 한국대기환경학회지
    • /
    • 제15권6호
    • /
    • pp.767-777
    • /
    • 1999
  • In the coastal region air flow changes due to the abrupt change of surface temperature between land and sea. So a numerical simulation for atmospheric flow fields must be considered the correct fields of sea surface temperature(SST). In this study, we used variables such as latent heat flux, sensible heat flux, short and long wave radiation of ocean and atmosphere which exchanged across the sea surface between atmosphere and ocean model. We found that this consideration simulated the more precise SST fields by comparing with those of the observated results. Simulated horizontal SST differences in season were 2.5~4$^{\circ}C$. Therefore we simulated the more precise atmospheric flow fields and the movement and dispersion of the pollutants with the Lagrangian particle dispersion model. In the daytime dispersion pattern of the pollutants emitted from ship sources moved toward inland, in the night time moved toward sea by land/sea breeze criculation. But air pollutants dispersion can be affected by inland topography, especially Yangsan and coastal area because of nocturnal wind speed decrease.

  • PDF

SEA 를 이용한 굴삭기 차실 소음 모델 개발 (Excavator cabin modeling for noise analysis using SEA)

  • 강정환;박수동;곽형택;김주호;김성재;김인동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.156-158
    • /
    • 2014
  • The interior noise of an excavator cabin is important factor related to operation efficiency. For analyzing the cabin air-borne sound, the SEA cabin model was developed using VA One. Analysis result using measured surface SPL of cabin was compared with test data. And the noise reduction guide of cabin was suggested with contribution and sensitivity analysis results of major design variables using developed SEA analysis.

  • PDF

지역 순환풍 발생 특성 이해를 통한 국내 주요항만 발생 대기오염물질의 항구도시 영향 범위 분석 -여름철 해륙풍 모사를 중심으로- (Dispersion of Maritime Air Pollutants from Harbor Area into Major Port Cities Considering Characteristics of Local Wind Circulation in Korea -A Case Study of Sea and Land Breezes during Summer-)

  • 권용범;조인희
    • 해양환경안전학회지
    • /
    • 제27권6호
    • /
    • pp.721-730
    • /
    • 2021
  • 본 연구에서는 국내 서로 다른 지리적 특성을 갖는 지역에서 발생되는 해륙풍에 의한 항만 내 선박 대기오염물질의 항구도시 확산 범위를 규명하고자 하였다. 연구 대상 지역은 서해안(인천항 및 평택·당진항), 다도해 지역(목포항), 남해 및 동해(부산항 및 마산항), 동해 산간 지역(동해·묵호항)으로 선정하였다. 해륙풍 발생과 그로 인한 항만 내 선박에서 기인하는 대기오염물질의 확산 모사를 위하여 비선형(Non-linear) 및 비정상(Unsteady) 거동의 국지 순환풍 모사가 가능한 HOTMAC-RAPTAD 프로그램을 활용하였으며, 모사 기간은 전형적인 여름 날씨인 7월 중순으로 하였다. 그 결과, 해륙풍의 발생 특성과 항만에서 발생되는 대기오염물질의 주변 지역 확산 거동이 지역마다 서로 다르게 나타났는데 연구 대상 항만인 인천항, 목포항, 부산항, 동해·묵호항에서 배출되는 대기오염물질은 항구로부터 각각 27~31km(서울 서쪽 일부 지역), 21~24km(무안 남부), 20~26km(김해 및 양산 인근), 22~25km(태백산맥 능선 지역)까지 영향을 끼치는 것으로 분석되었다. 따라서 본 연구에서 도출된 결과는 향후 효과적인 항만 지역 대기질과 선박 대기오염물질 관리에 있어 매우 중요한 기초 수단으로 활용 가능할 것으로 기대된다.

기계학습 기반의 IABP 부이 자료와 AMSR2 위성영상을 이용한 여름철 북극 대기 온도 추정 (The Estimation of Arctic Air Temperature in Summer Based on Machine Learning Approaches Using IABP Buoy and AMSR2 Satellite Data)

  • 한대현;김영준;임정호;이상균;이연수;김현철
    • 대한원격탐사학회지
    • /
    • 제34권6_2호
    • /
    • pp.1261-1272
    • /
    • 2018
  • 북극 지역의 대기 온도는 바다 및 해빙, 대기 사이의 에너지 교환에 큰 역할을 하므로 북극 대기 온도를 정확하게 파악하는 것은 중요하다. 하지만 현장 관측 자료들은 북극 대기 온도의 공간적인 분포를 나타내는 데에 한계가 있다. 따라서 본 연구에서는 부이(buoy) 자료와 Advanced Microwave Scanning Radiometer 2(AMSR2) 위성자료를 이용하여 기계학습 기반 여름철 대기 온도 추정 모델을 구축하였다. 기계학습으로는 random forest(RF) 및 support vector machine(SVM)을 사용하였으며, AMSR2 관측 시간에 따라 하루 두 번의 대기 온도를 추정하였다. 또한 추정된 대기 온도를 유럽 중기예보센터(European Centre for Medium-Range Weather Forecasts, ECMWF)의 ERA-Interim 재분석자료의 대기 온도와 공간 분포를 비교하였다. 교차 검증 결과 두 가지 기계학습 기법 모두 0.84-0.88의 $R^2$$1.31-1.53^{\circ}C$의 RMSE를 보였다. 공간적인 분포에서 IABP 부이 관측 자료가 존재하지 않는 바렌츠해(Barents Sea), 카라해(Kara Sea) 및 배핀만(Baffin bay) 지역에서는 기계학습 모델이 ERA-Interim 대기 온도에 비하여 과소 추정하는 경향을 보였다. 본 연구는 경험적인 북극 대기 온도 추정의 가능성과 한계점을 서술하였다.

위성자료를 이용한 한반도 주변 해상 대기표층의 열속 (Heat Fluxes in the Marine Atmospheric Surface Layer around the Korean Peninsula based on Satellite Data)

  • 홍기만;권병혁;김영섭
    • 수산해양교육연구
    • /
    • 제17권2호
    • /
    • pp.209-217
    • /
    • 2005
  • The energy balance of the surface layer of the water (the Yellow Sea, the East China Sea and the East Sea) was examined using satellite data. Variations of the net heat flux were similar to those of the latent heat flux which was more intensive than the sensible heat flux. The sensible heat flux was affected the difference between the sea surface temperature and the air temperature and was less important over the Yellow Sea. The maximum of the latent heat flux occurred in autumn when the air is drier and the wind is stronger. The shortwave radiation flux decreased with the latitude and depended on the cloudiness as the longwave radiation flux does. Annual variations of heat fluxes show that the latent heat flux was more intensive over the East China Sea than the East Sea and the Yellow Sea, while the spatial differences of the other heat fluxes were weak.

기후변화와 동해안에서의 명태 자원의 고갈 (Climate Change and Depletion of Walleye Pollock Resources in the East Sea)

  • Kim, Jong-Gyu;Kim, Joong-Soon
    • 한국환경보건학회지
    • /
    • 제44권3호
    • /
    • pp.259-266
    • /
    • 2018
  • Objectives: Considered the "national fish" in Korea, the walleye pollock (Gadus chalcogrammus) has disappeared in the East Sea (Sea of Japan), a main habitat and fishing ground for the species. The reason for the disappearance is still a matter of controversy. This study was performed to investigate the long-term relationship between the walleye pollock catch and various meteorological and oceanographic factors in these waters. Methods: Fishery data on walleye pollock and data on meteorological and marine environmental factors over the 30 years (1981-2010) were obtained from the official national database. Time series analysis and correlation and regression analyses were performed to study the relationships. Results: Both air temperature and sea surface temperature in the East Sea rose over these 30 years, and the latter became more prominent. Salinity and dissolved oxygen showed a tendency to decrease while concentrations of nutrients such as nitrite nitrogen and nitrate nitrogen showed an increasing tendency. Sea surface temperature, air temperature, atmospheric pressure, and wind grade were negatively correlated with the catch size of walleye pollock (p<0.05), but salinity was positively correlated (p<0.001). Conclusion: The results of this study indicate that climate change, especially ocean warming, affected the habitat of walleye pollock. The results also indicate that lower sea surface and air temperatures, milder wind grade, and higher salinity were preferred for the survival of the fish species. It is necessary to pay attention to changes of the ocean ecosystem in terms of environmental pollution as well as seawater temperature.

군산항의 평균 열속 (Mean Heat Flux at Gunsan Harbor)

  • 최용규;조영조;최옥인;양원석
    • 한국수산과학회지
    • /
    • 제36권5호
    • /
    • pp.535-540
    • /
    • 2003
  • Based on the monthly weather report of Korea Meteorological Administration (KMA) and daily sea surface temperature (SST) data from National Fisheries Research and Development Institute (NFRDl) (1991-2001), mean heat fluxes were estimated at the Gunsan harbor Net heat flux was transported from the air to the sea surface during March to early September, and it amounts to $125\;Wm^{-2}$ in average daily during May to June. During the middle of September to February, the transfer of net heat flux was conversed from the sea surface to the air with $-125\;Wm^{-2}$ in mininum value in October. Short wave radiation was ranged from 50 to $248\;Wm^{-2}$ showing maxima in April to June. Long wave radiation was ranged from 25 to $92\;Wm^{-2}$ with mininum value in June to July. Sensible heat flux denoting negative values in April to August was ranged from -30 to $72\;Wm^{-2}.$ Latent heat flux was ranged from 15 to $82\;Wm^{-2}$ with maxima in August to September. The phase of heat exchange was changed from cooling to heating in the end of February, and from heating to cooling In the beginning of September. The advective term of heat flux showed minima in April to June and maxima in November. The ratio of temperature variations was 1.37 in the sea surface process and the horizontal process by advection. This indicates that the main factor in variation of temperature at Gunsan harbor is the heat exchange process through the sea surface from the air.

Numerical Study on the Extrapolation Method for Predicting the Full-scale Resistance of a Ship with an Air Lubrication System

  • Kim, Dong-Young;Ha, Ji-Yeon;Paik, Kwang-Jun
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.387-393
    • /
    • 2020
  • Frictional resistance comprises more than 60% of the total resistance for most merchant ships. Active and passive devices have been used to reduce frictional resistance, but the most effective and practical device is an air lubrication system. Such systems have been applied in several ships, and their effects have been verified in sea trials. On the other hand, there are some differences between the results predicted in model tests and those measured in sea trials. In this study, numerical analyses were carried out for a model and a full-scale ship. A new extrapolation method was proposed to improve the estimation of the full-scale resistance of a ship with an air lubrication system. The volume of fluid (VOF) method was considered for the numerical models of the air layer. The numerical method was validated by comparing the experimental data on the air layer pattern and the total resistance.

해수면 온도 변화가 서해상 강설에 미치는 영향 연구 (A Study of the Effects of SST Deviations on Heavy Snowfall over the Yellow Sea)

  • 정재인;박록진
    • 대기
    • /
    • 제23권2호
    • /
    • pp.161-169
    • /
    • 2013
  • We examine the effects of the sea surface temperature (SST) distribution on heavy snowfall over the Yellow Sea using high-resolution SST products and WRF (Weather Research and Forecasting) model simulations in 30 December 2010. First, we evaluate the model by comparing the simulated and observed fresh snowfall over the Korean peninsula (Ho-Nam province). The comparison shows that the model reproduces the distributions and magnitudes of the observed snowfall. We then conduct sensitivity model simulations where SST perturbations by ${\pm}1.1^{\circ}C$ relative to baseline SST values (averaged SST for $5{\sim}15^{\circ}C$) are uniformly specified over the region of interest. Results show that ${\pm}1.1^{\circ}C$ SST perturbation simulations result in changes of air temperature by $+0.37/-0.38^{\circ}C$, and by ${\pm}0.31^{\circ}C$ hPa for sea level pressure, respectively, relative to the baseline simulation. Atmospheric responses to SST perturbations are found to be relatively linear. The changes in SST appear to perturb precipitation variability accounting for 10% of snow and graupel, and 18% of snowfall over the Yellow Sea and Ho- Nam province, respectively. We find that anomalies of air temperature, pressure, and hydrometeors due to SST perturbation propagate to the upper part of cloud top up to 500 hPa and show symmetric responses with respect to SST changes.