• Title/Summary/Keyword: Scroll expander

Search Result 36, Processing Time 0.027 seconds

Design of Scroll Expander for Electric Power Generation System using Organic Rankine Cycle with Biomass Energy Source (바이오매스를 에너지원으로 하는 유기냉매 사이클 스크롤 팽창기 발전 장치 설계)

  • Moon, J.H.;Yu, J.S.;Kim, H.J.;Cho, N.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.30-36
    • /
    • 2012
  • A scroll expander has been designed to produce a shaft power from a R134a Rankine cycle for electricity generation. Heat was supplied to the Rankine cycle through a heat exchanger, which received heat from another cycle of water. In the water cycle, water was heated up in a boiler using biogenic solid fuel. The designed scroll expander was a horizontal type, and a trochoidal oil pump was employed for oil supply to bearings and Oldham-ring keys. For axial compliance, a back pressure chamber was created on the backside of the orbiting scroll base plate. Numerical study has been carried out to estimate the performance of the designed scroll expander. The expander was estimated to produce the shaft power of about 2.9 kW from a heat supply of 36 kW, when the temperature of R134a was $80^{\circ}C$ and $35^{\circ}C$ at the evaporator and condenser of the Rankine cycle, respectively. The expander efficiency was about 70.5%. When the amount of heat supply varied in the ranges of 7.5~55 kW, the expander efficiency changed in the range of 45.6~70.5%, showing a peak efficiency of 70.5% at the design shaft speed.

Performance Test of Scroll Expander for Micro-Power Generation (소규모 발전용 스크롤 팽창기 성능시험)

  • Kim Hyun J.;Park Ik S.;Rha Phil C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.325-332
    • /
    • 2005
  • This paper addresses the development of a scroll expander for power generation from relatively low temperature steam source. It has a double-sided orbiting scroll member so that no thrust bearing is needed to support the base plate of the orbiting scroll. Three power transmission shafts are placed at the periphery of the orbiting scroll base plate, and these shafts can also function as anti-rotation devices. Final output is obtained from the main central shaft engaged with the three power transmission shafts through gear assembly. The clearance between the fixed and orbiting scroll elements was estimated by comparing measurement of the mass flow rate with calculation results of a computer simulation. Due to large clearance, the expander total and volumetric efficiencies were measured to be $34\%\;and\;43\%$, respectively. It has been shown through the computer simulation that the total and volumetric efficiencies could be improved to $65\%\;and\;83\%$, respectively, if the current clearance is reduced by half.

Effect of Nitrogen Injection Pressure on Lqiufied Engine Performance (질소 분사 압력이 액화질소 엔진의 성능 특성에 미치는 영향)

  • Shin, Donggil
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2017
  • A liquid nitrogen engine is a highly clean power engine, which does not emit any hazardous substances in its fumes. Additionally, it has an advantage over electric vehicles, as its energy density is larger than that of a battery. The use of an existing liquid nitrogen engine is typically limited to the reciprocation type. In this study, the concept of a nitrogen engine equipped with a scroll expander is introduced. The engine's efficiency was shown to increase when the scroll expander was utilized in the engine, while also adding to the simplification of the structure. Therefore, compared to the existing reciprocation-type engine, the engine with the scroll expander has the potential to be both technically and economically more competitive. In this study, the performance of a liquid nitrogen engine equipped with a scroll expander was analyzed while altering the injection pressure profile of liquid nitrogen.

Operating Characteristics of a Scroll Expander Used in Organic Rankine Cycle (유기랭킨사이클 적용 스크롤 팽창기 성능 특성 연구)

  • Shin, Dong-Gil;Kim, Young-Min;Kim, Chang-Gi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.776-781
    • /
    • 2011
  • The rapid increases in global energy demand and global warming need renewable energy sources such as solar thermal energy, biomass energy and waste heat. A ORC-based micro-CHP system(< 10 kWe) is one of the effective means to use renewable energy and solve energy problems because of its compactness, flexibilities and lower cost compared to other systems. The most important core components of the ORC is the expander which has a strong effect on the cycle efficiency. In the range of power output from 1 to 10 kW, the scroll expander is a good choice due to its performance and reliability. In this study, we have carried out an experimental study on an ORC equipped with oil-free scroll expander working with refrigerant R134a. We have measured power output and thermal efficiencies of the ORC and analyzed correlation between volumetric efficiencies of the expander and thermal efficiencies of the ORC.

Experimental Study on the Performance Characteristics of a Scroll Expander for 1kW-class Organic Rankine Cycle (1kW급 유기랭킨사이클용 스크롤 팽창기의 성능 특성에 관한 실험적 연구)

  • Kim, Dokyun;Yun, Eunkoo;Yoon, Sang Youl;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.41-48
    • /
    • 2015
  • The performance characteristics of a scroll expander is the most important variable for the performance of organic Rankine cycle system. In this paper, the performance characteristics of a scroll expander was identified using 1kW class organic Rankine cycle system with various operating conditions. The ORC system is composed of an evaporator, a scroll expander, a condenser and a working fluid feed pump that uses R245fa as working fluid. The hot water temperature was controlled from $80^{\circ}C$ to $115^{\circ}C$ by the 50kW-class electric water-heater. The maximum isentropic efficiency of the scroll expander was measured about 77%, and the shaft power was measured from 0.5 kW to 1.8 kW according to heat source temperatures.

Effects of Channel Amplitude Ratio on Flow and Heat Transfer Characteristics of Primary Surface Heat Exchanger for ORC (유기 랭킨 사이클용 스크롤 팽창기 성능 시험에 관한 연구)

  • Moon, Je-Hyeon;Park, Keun-Tae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.151-157
    • /
    • 2014
  • An algebraic scroll expander has been fabricated and tested in a R134a Rankine cycle with heat source of 20 kW. For the operating conditions of 20~26 bar and $90{\sim}93^{\circ}C$ at the expander inlet and 8~9 bar at the outlet, the expander produced the shaft output power of about 0.6~0.7 kW in the operating speed range of 1500~2000 rpm. These correspond to the expander efficiency of 40~45%. The volumetric efficiency increased with increasing of the expander speed, reaching to 80% at 2000 rpm. Comparing to numerical simulation results, mechanical efficiency from the test data was found to be considerably low by as much as 30%, indicating that reduction in the frictional loss should be made to improve the scroll expander efficiency.

Performance Analysis of Scroll Expander-Compressor Unit for $CO_2$ Transcritical Cycles ($CO_2$ 초임계 사이클을 위한 일체형 스크롤 팽창기-압축기 성능해석)

  • Kim Hyun-Jin;Nam Bo-Young;Ahn Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.434-442
    • /
    • 2006
  • In a two-stage compression $CO_2$ transcritical cycle, application of a scroll expander-compressor unit has been considered in order to improve the cycle COP. For both expander and 1st stage compressor, scroll wrap profile which was originally designed for a R410A air-conditioning cycle mechanism was used with minor modifications: wrap height and involute end angle were adjusted for required displacement volume and built-in volume ratio. For pressure condition of 10 Mpa/3.5 MPa and expander inlet temperature of $35^{\circ}C$, 25% improvement in COP was obtained by using expander-compressor unit. As evaporator pressure increased, COP improvement was lowered mainly due to decreasing compressor peformance.

Fabrication and Study on the Performance Characteristics of a Scroll Expander for Organic Rankine Cycle (유기랭킨사이클용 소형 스크롤 팽창기 제작 및 성능 특성 연구)

  • Baek, Seungdong;Sung, Taehong;Lee, Minseok;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.50-56
    • /
    • 2016
  • In this work, the open-drive oil free air compressor is modified to activate an organic Rankine cycle system as an expanding machine. The shape of the modified scroll expander case is a rectangular parallelepiped and the size of the case is $0.0394m^3$. The scroll expander is operated in an ORC using R245fa as working fluid with various working conditions for the performance test. The test data points are used to calculate the parameters of the scroll expander semi-empirical simulation model. The simulation results are compared with the experimental results to validate the simulation model.

A Theoretical Study on Driving Distance of Compressed Air Vehicle Using Scroll Expander (스크롤 팽창기를 적용한 압축공기 엔진 자동차의 주행거리 특성에 관한 연구)

  • Shin, Donggil
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.170-175
    • /
    • 2016
  • An internal combustion engine is the most widely used power source for an automobile. In order to resolve environmental problems resulting from the use of internal combustion engines, environmentally friendly automobiles such as hybrid, electric, and air-engine vehicles are being developed. The share of hybrid vehicles using battery or pure electric vehicles, which are not popular, is gradually increasing. Compared to an electric vehicle, which uses an electric motor, air-engine vehicles, which use compressed air, have hardly been developed. In this study, a compressed air engine with a scroll expander is introduced, and the potential mileage of an automobile utilizing this engine is theoretically calculated.