DOI QR코드

DOI QR Code

Experimental Study on the Performance Characteristics of a Scroll Expander for 1kW-class Organic Rankine Cycle

1kW급 유기랭킨사이클용 스크롤 팽창기의 성능 특성에 관한 실험적 연구

  • Kim, Dokyun (School of Mechanical Engineering, Pusan National University) ;
  • Yun, Eunkoo (School of Mechanical Engineering, Pusan National University) ;
  • Yoon, Sang Youl (Rolls-Royce University Technology Centre, Pusan National University) ;
  • Kim, Kyung Chun (School of Mechanical Engineering, Pusan National University)
  • 김도균 (부산대학교 기계공학부) ;
  • 윤은구 (부산대학교 기계공학부) ;
  • 윤상열 (롤스로이스 부산대학교 대학기술연구센터) ;
  • 김경천 (부산대학교 기계공학부)
  • Received : 2015.06.30
  • Accepted : 2015.08.26
  • Published : 2015.08.31

Abstract

The performance characteristics of a scroll expander is the most important variable for the performance of organic Rankine cycle system. In this paper, the performance characteristics of a scroll expander was identified using 1kW class organic Rankine cycle system with various operating conditions. The ORC system is composed of an evaporator, a scroll expander, a condenser and a working fluid feed pump that uses R245fa as working fluid. The hot water temperature was controlled from $80^{\circ}C$ to $115^{\circ}C$ by the 50kW-class electric water-heater. The maximum isentropic efficiency of the scroll expander was measured about 77%, and the shaft power was measured from 0.5 kW to 1.8 kW according to heat source temperatures.

스크롤 팽창기의 성능특성은 유기랭킨사이클 (ORC) 시스템의 성능에 가장 중요한 변수이다. 본 연구에서는 1kW급 ORC 시스템을 구성하여 다양한 작동 조건에서 스크롤 팽창기의 성능특성을 파악하였다. ORC 시스템은 증발기, 스크롤 팽창기, 응축기, 작동유체펌프로 구성되어 있으며, 작동유체로 R245fa를 사용하였다. 고온수 온도는 50kW급 전기히터에 의해 $80^{\circ}C$에서 $115^{\circ}C$까지 제어되었다. 스크롤 팽창기의 최대 등엔트로피 효율은 77%로 측정되었고, ORC 시스템의 축동력은 열원의 온도 조건 및 팽창기의 회전속도에 따라 0.5kW에서 1.8kW까지 측정되었다.

Keywords

References

  1. Tchanche, B. F., Lambrinos, G., Frangoudakis, A. and Papadakis, G., "Low-grade heat conversion into power using organic Rankine cycles - A review of various applications", Renewable and sustainable Energy Reviews, 15(8), 3963-3979, (2011) https://doi.org/10.1016/j.rser.2011.07.024
  2. Dai, Y., Wang, J. and Gao, L., "Parametric Optimization and Comparative Study of Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery", Energy Conversion and Management, 50(3), 576-582, (2009) https://doi.org/10.1016/j.enconman.2008.10.018
  3. Madhawa, Hettiarachchi H. D., Golubovic, M., Worek, W. M. and Ikegami, Y., "Optimum Design Criteria for an Organic Rankine Cycle Using Low-Temperature Geothermal Heat Sources", Energy, 32(8), 1698-1706, (2007) https://doi.org/10.1016/j.energy.2007.01.005
  4. Quoilin, S., Orosz, M., Hemond, H. and Lemort, V., "Performance and Design Optimization of a Low-Cost Solar Organic Rankine Cycle for Remote Power Generation", Solar Energy, 85, 955-966, (2011) https://doi.org/10.1016/j.solener.2011.02.010
  5. Rayegan, R. and Tao, Y. X., "A Procedure to Select Working Fluids for Solar Organic Rankine Cycles (ORCs)", Renewable Energy, 36, 659-670, (2011) https://doi.org/10.1016/j.renene.2010.07.010
  6. Hung, T. C., Wang, S. K., Kuo, C. H., Pei, B. S. and Tsai, K. F., "A Study of Organic Working Fluids on System Efficiency of an ORC Using Low-Grade Energy Sources", Energy, 35, 1403-1411, (2010) https://doi.org/10.1016/j.energy.2009.11.025
  7. Chen, H., Goswami, D. Y. and Stefanakos, E. K., "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat", Renewable and sustainable Energy Reviews, 14, 3059-3067, (2010) https://doi.org/10.1016/j.rser.2010.07.006
  8. Qiu, G., Liu, H. and Riffat, S., "Expanders for micro-CHP systems with organic Rankine cycle", Applied Thermal Engineering, 31, 3301-3307, (2011) https://doi.org/10.1016/j.applthermaleng.2011.06.008
  9. Declaye, S., Quoilin, S., Guillaume, L. and Lemort, V., 2013, "Experimental Study on an Open- Drive Scroll Expander Integrated into an ORC (Organic Rankine Cycle) System with R245fa as Workingfluid", Energy, 55, 173-183, (2013) https://doi.org/10.1016/j.energy.2013.04.003