• 제목/요약/키워드: Scroll Rotor

검색결과 12건 처리시간 0.022초

3차원 유한요소해석을 이용한 스크롤 로터의 단조 금형 설계 (The Forging Die Design of Scroll Rotor by using the 3-D FEM Analysis)

  • 이영선;이정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.111-115
    • /
    • 2001
  • The die design for hot forging was investigated for manufacturing precisely of scroll rotor made with Al-Si alloy. A scroll rotor is a non-symmetric 3-D shape part, having involute wraps. Disk-shaped billet of Al-Si alloy was extruded to wraps and boss simultaneously. Because the involute wraps is not axi-symmetric, the flow velocity and the stress of die is very much different at each portion. Moreover, the die in wraps portion is a cantilever beam and fractured. In this paper, the analysis of forming and die stress is investigated using the FEM tool, DEFORM-3D. The tensile strength of tool material is $250kg/mm^{2}$. From the analysis results, we can find the maximum principal stress of die is over the fracture strength and redesign the die. The prototype forged part is superior in net shaping and microstructure.

  • PDF

다익 팬/스크롤 시스템의 로터 내부 유동 특성에 관한 실험적 연구 (An Experimental Study for Flow Characteristics Inside the Rotor of a Multiblade Fan/Scroll System)

  • 맹주성;윤준용;안태범;윤종은;한덕전
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.646-652
    • /
    • 1999
  • Detailed characteristics of the mean flow field inside the rotor of a multiblade fan with scroll are presented in this paper by measurements and visualizations. The measurements were taken with a five-hole probe and conformed by smoke test. How field is distinguished clearly in 3 regions with respect to the flow directions. The first region is near the exit of scroll where the fluid flows the opposite direction to the rotation of rotor. The second is opposite side of the scroll exit where the fluid flows the same direction to the rotation of rotor. The third is the region where the fluid flows toward the blades directly with the largest values comparatively. The strongest recirculation is happened in the second region, and the weakest one is in the third region. This complex configuration makes the flow field highly non-uniform and may cause to generate a noise and ineffective flow efficiency.

유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석 (Transient Dynamic Analysis of Scroll Compressor Crankshaft Using Finite Element-Transfer Matrix Method)

  • 김태종
    • 소음진동
    • /
    • 제10권1호
    • /
    • pp.97-106
    • /
    • 2000
  • The dynamic behavior of crankshaft-bearing system in scroll compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element formulation is proposed including the field element for a shaft section and the point element at balancer weight locations, bearing locations, etc., whereas the conventional method is used with the elements. The Houbolt method is used to consider the time march for the integration of the system equations. The linear stiffness and damping coefficients are calculated for a finite cylindrical fluid-film bearing by solving the Reynolds equation, using finite difference method. The orbital response of crankshaft supported on the linear bearing model is obtained, considering balancer weights of motor rotor. And, the steady state displacement of crankshaft are compared with a variation in balancer weight. The loci of crankshaft at bearing locations are composed of the synchronous whirl component and the non-synchronous whirl component.

  • PDF

가변안내깃이 존재하거나 없는 구심터빈의 탈설계 성능해석 (Off-design performance analysis of radial inflow turbines with or without variable area guide vane)

  • 한기수;김광호
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2171-2180
    • /
    • 1991
  • 본 연구에서는 구심터어빈의 설계시 많이 사용되고 있는 NASA의 안내깃 및 회 전익 손실모델들을 이용하여 PR과 K를 실험에 의존하지 않고 구하는 방법을 제시하고 자 한다. 그리고 이 방법을 가변 안내깃이 존재하거나 없는 가상의 구심터빈에 대하 여 탈설계 성능해석을 하여, 본 방법이 기존에 알려진 실험 현상과 유사한 경향을 보 이는지를 알아보기로 한다. 또한 안내깃이 있는 경우에 대하여 기존의 알려진 탈설 계 성능 예측용 프로그램과의 비교를 통하여 본 연구의 해석방법을 간접적으로 검증하 기로 한다.

전향 원심 송풍기의 3차원 유동에 대한 수치해석 (Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan)

  • 윤준용;맹주성;변성준;이상환
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

액체로켓엔진용 산화제펌프 회전체의 하중 예측 (Thrust Estimation Acting on Rotor of LOX Pump for Liquid Rocket Engine)

  • 김대진;최창호
    • 한국추진공학회지
    • /
    • 제19권6호
    • /
    • pp.98-104
    • /
    • 2015
  • 회전체의 과도한 하중은 펌프의 손상이나 수명 감소의 원인이 된다. 이에 액체로켓엔진용 산화제펌프의 안정성 확보를 위해 펌프 회전체에 작용하는 하중을 상사 시험을 통해 예측하였다. 축방향 하중은 펌프 외부에 설치된 축추력 측정 장치를 통해 간접적으로 계측하였으며, 반경방향 하중은 볼류트의 압력 분포를 토대로 계산하였다. 그 결과, 펌프의 유량이 작을수록 축방향 하중과 반경방향 하중 모두 증가하는 것으로 확인되었다. 그러나, 하중의 크기가 크지 않아 펌프의 안정성에 영향을 끼치지 않을 것으로 예측되었다.

터보차저 공급 오일 압력과 온도가 풀-플로팅 베어링의 동적 거동에 미치는 영향 (Effects of Oil Inlet Pressure and Temperature on the Dynamic Behaviors of a Full-Floating Ring Bearing Supported Turbocharger Rotor)

  • 이인범;홍성기
    • 한국유체기계학회 논문집
    • /
    • 제20권2호
    • /
    • pp.53-62
    • /
    • 2017
  • In this paper, the effect of oil conditions in rotor dynamic behaviors of a FFRB (Fully-Floating Ring Bearing) is investigated. Through the characteristic of a FFRB has two films, it has several advantages such as less friction loss and better stability over a wide speed range. However, it is difficult to supply a oil to the inner film. Thus, turbocharger makers have been paid significant attention to the lubrication of a FFRB because of its importance. This work focuses on the influence of oil inlet pressure and temperature. The methodologies of computational simulation and experimental test were used to estimate the rotor dynamic behaviors. In experimental test, the single-scroll turbocharger for the 1.4L diesel engine was used. The results show that the oil inlet pressure and temperature will place considerable influence on the rotor response. Oil conditions affect RSR (Ring Speed Ratio) which is cause of sub-synchronous vibrations, which also cause of oil whirling and whip even a critical speed. At higher speed range, the phenomenon of self-excited vibrations which is cause of instability of fluid whirl is investigated through the orbit shapes that consist of small orbit and large amplitude orbit. It is shown that some performance of a FFRB can be controlled by the conditions of oil supply. Finally, it was revealed that the oil induced operating conditions will strongly affect the turbocharger rotor dynamics behaviors.

고 흡입저항을 가진 원심 송풍기 (Centrifugal Blower with High Inlet Resistance)

  • 김재원
    • 한국유체기계학회 논문집
    • /
    • 제6권2호
    • /
    • pp.15-22
    • /
    • 2003
  • Comprehensive study on a centrifugal blower for air-purifier involving a few physical filters for percolation process has been accomplished for an optimal design of the air handling system. The filtering media causes a flow resistance for induced flows by a rotating impeller. The present methodology is to adopt PIV system for velocity measurements and wind tunnel connected with an anechoic chamber for total performance test of the blower. Trial prototypes for the blades of a rotor and casing are presented for satisfaction of both flow rate and noise level set by design objectives. Tapered blades with a special casing for a fan show good performance data. The results of velocity fields also explain the reason of improvements of the blower performance.

선박 폐열을 이용한 100kW급 구심터빈 공력설계 및 CFD에 의한 성능해석 (Performance Analysis by CFD and Aerodynamic Design of 100kW Class Radial Turbine Using Waste Heat from Ship)

  • 모장오;김유택;김만응;오철;김정환;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.175-181
    • /
    • 2011
  • 본 연구에서는 선박용 폐열회수 발전시스템에 적용 가능한 100kW급 구심터빈의 설계 및 CFD 해석기법을 이용하여 열사이클 시스템 및 구심터빈 최적화를 위한 설계자료를 확보하는 것이다. 구심터빈은 스크롤 케이싱, 18개의 베인노즐, 13개의 로터 블레이드로 구성되며, 해석격자는 격자테스트를 통해 약 230만개 정도의 최적격자를 구성하였다. 질량유량 0.5kg/s, 회전속도는 75,000rpm, 입구압력은 195~620kPa 범위 내에서 8가지 조건으로 설정하였다. 베인노즐 내부로 증기가 유입된 후 출구로 갈수록 노즐의 압력면과 흡입면의 압력이 비슷해지면서 마하수가 거의 같은 값을 보였다. 입구온도와 압력이 $250^{\circ}C$, 352kPa 일 때 등엔트로피 효율은 74%, 기계동력은 108kW의 해석결과를 보이고 있다.

폐열회수 발전을 위한 지로터 팽창기 설계 및 성능해석 (Design and performance analysis of a gerotor expander for power generation from waste heat)

  • 박근태;김용희;김현진
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.17-25
    • /
    • 2016
  • In this paper, the feasibility study on a gerotor type expander as a power converting device in a small scale power generation ORC system was made by performance analysis of the gerotor expander. Design of a 1kW-class gerotor expander was carried out and its performance was numerically simulated. For a R134a Rankine system with about 20 kW solar heat source, the gerotor expander efficiency was calculated to be 35~75% for the operating conditions of $Te=80{\sim}100^{\circ}C$ and $Tc=30{\sim}60^{\circ}C$. Maximum expander efficiency was obtained at an expansion ratio somewhat higher than the design expansion ratio due to pre-expansion during suction process inside the outer and inner rotor mate. If the operating expansion ratio is not far from the design expansion ratio, the gerotor expander performance can be well compared to that of a scroll type.