• 제목/요약/키워드: Screw-in force

검색결과 239건 처리시간 0.027초

Change in Turning Ability According to the Side Fin Angle of a Ship Based on a Mathematical Model

  • Lee, WangGook;Kim, Sang-Hyun;Jung, DooJin;Kwon, Sooyeon
    • 한국해양공학회지
    • /
    • 제36권2호
    • /
    • pp.91-100
    • /
    • 2022
  • In general, the effect of roll motion is not considered in the study on maneuverability in calm water. However, for high-speed twin-screw ships such as the DTMB 5415, the coupling effects of roll and other motions should be considered. Therefore, in this study, the estimation of maneuverability using a 4-degree-of-freedom (DOF; surge, sway, roll, yaw) maneuvering mathematical group (MMG) model was conducted for the DTMB 5415, to improve the estimation accuracy of its maneuverability. Furthermore, a study on the change in turning performance according to the fin angle was conducted. To accurately calculate the lift and drag forces generated by the fins, it is necessary to consider the three-dimensional shape of the wing, submerged depth, and effect of interference with the hull. First, a maneuvering simulation model was developed based on the 4-DOF MMG mathematical model, and the lift force and moment generated by the side fins were considered as external force terms. By employing the CFD model, the lift and drag forces generated from the side fins during ship operation were calculated, and the results were adopted as the external force terms of the 4-DOF MMG mathematical model. A 35° turning simulation was conducted by altering the ship's speed and the angle of the side fins. Accordingly, it was confirmed that the MMG simulation model constructed with the lift force of the fins calculated through CFD can sufficiently estimate maneuverability. It was confirmed that the heel angle changes according to the fin angle during steady turning, and the turning performance changes accordingly. In addition, it was verified that the turning performance could be improved by increasing the heel angle in the outward turning direction using the side fin, and that the sway speed of the ship during turning can affect the turning performance. Hence, it is considered necessary to study the effect of the sway speed on the turning performance of a ship during turning.

Sandblasted large grit, acid etched 표면처리에 따른 교정용 미니 임플랜트의 제거회전력에 관한 연구 (Removal torque of sandblasted large grit, acid etched treated mini-implant)

  • 오남희;김성훈;국윤아;이근혜;강윤구;모성서
    • 대한치과교정학회지
    • /
    • 제36권5호
    • /
    • pp.324-330
    • /
    • 2006
  • Sandblasted large grit, acid etched(SLA)표면처리 된 교정용 미니 임플랜트와 평활면을 가진 교정용 미니 임플랜트 사이에 제거회전력과 조직학적 소견을 통해 표면처리된 교정용 임플랜트의 임상적 가능성에 대하여 알아보고자 하였다. 실험재료로는 길이가 9.5 mm, 외경이 1.8 mm인 custom made, screw shaped, titanium implants가 사용되었다. 미니 임플랜트는 두개의 군으로 분류되었는데 SLA군은 20개의 SLA 표면처리된 미니 임플랜트이었고, 평활면군은 크기와 형태가 같지만 SLA처리공정이 생략되어 제작된 20개의 미니 임플랜트로 구성되었다. 이들은 10마리 가토의 경골에 식립되었다. 각각의 가토의 우측 경골에는 SLA군의 미니 임플랜트 2개가 식립되었고, 좌측 경골에는 평활면군의 미니 임플랜트 2개가 식립되었다. 각 군에는 식립 직후 Ni-Ti coil spring에 의해 약 150 g의 지속적인 견인력이 주어졌다. 식립 6주 후에 10마리의 가토를 희생하였고, 안정된 상태에서 Ni-Ti coil spring을 제거하였으며 digital torque gauge를 이용하여 제거 회전력을 측정하였다. 식립 6주 후에 SLA군의 경우 (8.29 Ncm) 평활면군 (3.34 Ncm)에 비해 더 높은 평균 제거회전력을 나타내었고 조직학적 소견에서도 screw 하방에서의 신생골 형성이 관찰되었다. SLA 표면처리된 미니 임플랜트는 평활면 미니 임플랜트에 비해 좀 더 강한 교정력에 저항할 수 있을 것으로 예상되었다.

Pre-Sliding Friction Control Using the Sliding Mode Controller with Hysteresis Friction Compensator

  • Choi, Jeong Ju;Kim, Jong Shik;Han, Seong Ik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1755-1762
    • /
    • 2004
  • Friction phenomenon can be described as two parts, which are the pre-sliding and sliding regions. In the motion of the sliding region, the friction force depends on the velocity of the system and consists of the Coulomb, stick-slip, Streibeck effect and viscous frictions. The friction force in the pre-sliding region, which occurs before the breakaway, depends on the position of the system. In the case of the motion of the friction in the sliding region, the LuGre model describes well the friction phenomenon and is used widely to identify the friction model, but the motion of the friction in the pre-sliding such as hysteresis phenomenon cannot be expressed well. In this paper, a modified friction model for the motion of the friction in the pre-sliding region is suggested which can consider the hysteresis phenomenon as the Preisach model. In order to show the effectiveness of the proposed friction model, the sliding mode controller (SMC) with hysteresis friction compensator is synthesized for a ball-screw servo system.

가상 반사압력을 이용한 사출성형의 준3차원 유동해석 (The Quasi 3-D Flow Simulation in injection Molding Using Virtual Pressure Reflection)

  • 이호상;신효철
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1294-1306
    • /
    • 1992
  • 본 연구에서는 IBPR 방법을 바탕으로 캐비티형상이 동일평면상에 있지 않은 경우에 대한 준3차원 유동해석과 주입기구가 있는 경우에 대한 유동해석을 별도로 수 행하여 실험결과와 비교하였다.해석결과는 실험과 잘 일치하였으며 그를 통해 앞서 개발한 IBRP방법이 보다 일반적인 경우에서의 캐비티 유동해석으로 확장, 응용될 수 있음을 확인할 수 있었다.

터빈로터 중심공 검사용 자기주행 공압형 로봇 개발 (Development of Self-Driven Pneumatic Robot for Boresonic Examination of Turbine Rotor)

  • 강배준;안명재;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권1호
    • /
    • pp.31-38
    • /
    • 2021
  • This study presents a new principle for driving the robot aimed at reducing the position error for the boresonic examination of turbine rotor. The conventional method of inspection is performed by installing manipulator onto the flange of the turbine rotor and connecting a pipe, which is then being pushed into the bore. The longer the pipe gets, the greater sagging and distortion appear, making it difficult for the ultrasonic sensor to contact with the internal surface of the bore. A pneumatic pressure will ensure the front or rear feet of the robot in close contact with the inner wall to prevent slipping, while the ball screw on the body of the robot will rotate to drive it in the axial direction. The compression force required for tight contact was calculated in the form of a three-point support, and a static structural simulation analysis was performed by designing and modeling the robot mechanism. The driving performance and ultrasonic detection ability have been tested by fabricating the robot, the test piece for ultrasonic calibration and the transparent mock-up for robot demonstration. The tests have confirmed that no slipping occurs at a certain pneumatic pressure or over.

연마 브러시 접촉력 산출을 위한 비선형 강건제어기 실험 (Experiments on Robust Nonlinear Control for Brush Contact Force Estimation)

  • 이병수
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.41-49
    • /
    • 2010
  • Two promising control candidates have been selected to test the sinusoidal reference tracking performance for a brush-type polishing machine having strong nonlinearities and disturbances. The controlled target system is an oscillating mechanism consisting of a common positioning stage of one degree-of-freedom with a screw and a ball nut driven by a servo motor those can be obtained commercially. Beside the strong nonlinearity such as stick-slip friction, the periodic contact of the polishing brush and the work piece adds an external disturbance. Selected control candidates are a Sliding Mode Control (SMC) and a variant of a feedback linearization control called Smooth Robust Nonlinear Control (SRNC). A SMC and SRNC are selected since they have good theoretical backgrounds, are suitable to be implemented in a digital environment and show good disturbance and modeling uncertainty rejection performance. It should be also noted that SRNC has a nobel approach in that it uses the position information to compensate the stickslip friction. For both controllers analytical and experimental studies have been conducted to show control design approaches and to compare the performance against the strong nonlinearity and the disturbances.

NC 선반 주축의 회전정도 측정 시스템의 구성 (The Organization of Rotational Accuracy Measurement System of NC Lathe Spindle)

  • 김영석
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.21-26
    • /
    • 2005
  • It is important to measure the rotational accuracy of NC lathe spindle as it affects to the qualities of all machines machined by the NC lathe using in industries. The bad rotational accuracy of NC lathe spindle are caused mainly by wearness of the spindle in using and quality of spindle when machining and using low level bearings. It occurs especially in case of NC lathes because the cutting force acting to work-piece act on one side to the spindle not to both sides symmetrically. Therefore in this study, constructing experimental appratus for measuring of rotational accuracy by using eddy current type gap sensors, converters, screw terminal, data acquisition board inserted in computer and software f3r data acquisition, DT VEE ver. 5.0 and then error data acquired in the rotational accuracy test of NC lathe spindle are analysed in plots and statistical treatments.

가변길이 엔드팁을 갖는 원추형 스프링을 이용한 도약로봇의 이동성 향상 (Mobility Improvement of a Jumping Robot using Conical Spring with Variable Length Endtip)

  • 김기석;김병상;송재복;임충혁
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1108-1114
    • /
    • 2009
  • Mobility is one of the most important features for a guard robot since it should be operated in rough places. A wheel-based mobile robot capable of jumping is an appropriate structure for a guard robot because it can easily satisfy the requirements for small guard robots. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes a small robot equipped with the jumping mechanism based on the conical spring with the variable length endtip. The variable length endtip enables the independent control of the jump force and jump angle which are related to the jump height and jump distance, respectively. Various experiments demonstrated that the proposed jumping mechanism can provide the independent control of jump force and jump angle, and improve the mobility of a small robot to overcome an obstacle. Furthermore, a combination of the jumping mechanism and the PSD sensor to measure the distance to the step enable the jumping robot to autonomously climb stairs.

마이크로 펀칭시스템 구현을 위한 심벌변위확대기구의 설계 (Design of Cymbal Displacement Amplification Device for Micro Punching System)

  • 최종필;이광호;이해진;이낙규;김성욱;주은덕;김병희
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.36-41
    • /
    • 2009
  • This paper presents the development of a micro punching system with modified cymbal mechanism. To realize the micro punching, we introduced the hybrid system with a macro moving part and micro punching part. The macro moving part consists of a ball screw, a linear guide and the micro step motor and micro punching part includes the PZT actuators and displacement amplification device with modified cymbal mechanism. The PZT actuator is capable of producing very large force, but they provide only limited displacements which are several micro meters. Thus the displacement amplification device is necessary to make those actuators more efficient and useful. For this purpose, a cymbal mechanism in series is proposed. The finite element method was used to design the cymbal mechanism and to analyze the mode shape of the one. The displacement and mode shape error between the FEM results and experiments are within 10%. A considerable design effort has been focused on optimizing the flexure hinge to increase the output displacement and punching force.

저정밀 X-Y 로봇을 이용한 검사 시스템의 변형된 Hough 변환을 이용한 위치오차보정 (Correction of Position Error Using Modified Hough Transformation For Inspection System with Low Precision X- Y Robot)

  • 최경진;이용현;박종국
    • 제어로봇시스템학회논문지
    • /
    • 제9권10호
    • /
    • pp.774-781
    • /
    • 2003
  • The important factors that cause position error in X-Y robot are inertial force, frictions and spring distortion in screw or coupling. We have to estimate these factors precisely to correct position errors, Which is very difficult. In this paper, we makes systems to inspect metal stencil which is used to print solder paste on pads of SMD of PCB with low precision X-Y robot and vision system. To correct position error that is caused by low precision X-Y robot, we defines position error vector that is formed with position of objects that exist in reference and camera image. We apply MHT(Modified Hough Transformation) for the aim of determining the dominant position error vector. We modify reference image using extracted dominant position error vector and obtain reference image that is the same with camera image. Effectiveness and performance of this method are verified by simulation and experiment.