• Title/Summary/Keyword: Screw press

Search Result 80, Processing Time 0.021 seconds

Effect of Press Temperature and Time on Physical Properties of Larch Particleboard (압체온도(壓締温度)와 시간(時間)이 낙엽송(落葉松) 파티클 보오드의 물리적(物理的) 특성(特性)에 미치는 영향(影響))

  • Lee, Phil Woo;Chung, Gyun
    • Journal of Korean Society of Forest Science
    • /
    • v.63 no.1
    • /
    • pp.12-20
    • /
    • 1984
  • This research was performed to estimate the properties of particleboard based on the press time and temperature which was made of chip of larch that grows in Korea. The results in this study were as follows: 1) Even though the chips, 1:1-35 ratio between length and thickness, are relatively bad condition, the surface smoothness that can easily spread the adhesive evenly and thoroughly and bonding ability of chips can give proper physical properties. 2) It shows more mechanical properties at the press time of 10 min. in MOR (Modulus of Rupture), MOE (Modulus of Elasticity) and SHA (Screw Holding Ability). 3) It is not significant according to the press time 20 min. in MOR, IBS (Internal Bonding Strength) and SHA, for the reciprocal actions between the accelerating aging effect of chip and the softening effect of adhesion are occured. 4) IBS is rising according to the increasing temp at the press time of 10 min. Because it needs to transfer the plate heat to make the proper hardening temp. In the layer. 5) The heat treatment effects have greatly influenced the stahility of dimension by falling the absorption, anisotropy and inhomegenity. As a result of these the values of thickness and linear expansion ratio were respectively dropped by the increase of press temp and the time and so did absorption.

  • PDF

Linear Expansion and Durability of a Composite Boards (MDF Laminated Using Three Selected Wood Veneers) against Drywood Termites

  • CAHYONO, Tekat Dwi;YANTI, Hikma;ANISAH, Laela Nur;MASSIJAYA, Muh Yusram;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.907-916
    • /
    • 2020
  • This research was conducted to investigate the linear expansion and resistance properties of a composite board (com-ply). This board was made of medium-density fiberboard (MDF) laminated using avocado (Persea americana), mahogany (Swietenia mahogani), and pine (Pinus merkusii) veneers. These three types of veneers were laminated on both surfaces of the MDF using adhesives, namely, epoxy and isocyanate. Glue (250 g·m-2) was spread on the surface, followed by cold press for 3 h with an applied pressure of 15 kg·cm-2. The research result revealed that com-ply exhibited an increased dimensional stability compared with MDF, indicated by reduction in water absorption, thickness swelling, and linear expansion. The com-ply made of the pine veneer and isocyanate adhesive exhibited high density, water absorption, thickness swelling, and screw withdrawal load. The com-ply that exhibited the strongest resistance to drywood termite attacks was the one made of the mahogany veneer and isocyanate adhesive. Moreover, the com-ply that exhibited the biggest weight loss (3.6 %) was made of the pine veneer and epoxy adhesive. The results of this research may facilitate in manufacturing com-ply using the selected veneer and adhesive without the application of hot press.

A Study on Fabrication of Polyester Copolymers (Ⅵ) -Physical Properties of PET/PETG Copolymer Blend by the Drawing Conditions- (폴리에스테르 공중합체의 Fabrication 연구 (Ⅵ) -PET/PETG 공중합체 블렌드의 연신조건에 따른 물리적 특성-)

  • 현은재;이소화;김기영;제갈영순;장상희
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.335-343
    • /
    • 2002
  • Blend resin (PET/PETG 70/30 blend) of poly (ethylene terephthalate) (PET) and poly (ethylene terephthalate glycol) (PETG) of weight percent 70/30 was prepared by a twin-screw extruder. Undrawn films of the blend and pure PETG were made by melt-press in hot press. Drawn films were made by capillary rheometer. Crystallinity, shrinkage, thermal, dynamic mechanical, and mechanical properties of these blends and PETG drawn films were investigated by wide angle X-ray diffractometer, dry oven, DSC thermal analyzer, and tensile tester. The crystallinity and density of these films increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The crystallinity and density of the blend films were higher than those of PETG films. The tensile strength and tensile modulus of these drawn alms increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The tensile strength and tensile modulus of blend films were higher than those of PETG films. Shrinkage of PETG md blend films decreased with draw ratio and draw rate. Shrinkage of undrawn blend film was 600% higher than that of pure PET film.

A study on the properties of the carbon long-fiber-reinforced thermoplastic composite material using LFT-D method (LFT-D공법을 이용한 탄소 장섬유 강화 열가소성 복합재의 특성에 관한 연구)

  • Park, Myung-Kyu;Park, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.80-85
    • /
    • 2016
  • Carbon fiber-reinforced composite materials have been widely used in various industrial fields, but there are limits to increasing their strength and stiffness, because of the short-length fibers that are impregnated in them. In this study, a lab-scale small extruder system was developed with the capability to perform the carbon fiber impregnation and extrusion process in order to evaluate the properties of long-length carbon fiber reinforced thermoplastic composite materials molded by the LFT-D method. Specimens were made with the small extruder to press-mold long-length carbon fiber composite materials and evaluate their material properties. As a result, it was found that the carbon fiber length, press load and carbon fiber contents have a considerable influence on the strength and stiffness. Additional studies on such factors as the mixing screw design and coating of the carbon fiber are needed in order to improve the mechanical properties of carbon fiber composite materials.

Effects of Processing Methods and Variety of Rapeseed Meal on Ruminal and Post Ruminal Amino Acids Digestibility

  • Chen, Xibin;Qin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.802-806
    • /
    • 2005
  • The objective of this study was to determine the effects of processing method and rapeseed variety on ruminal and intestinal protein digestibility of rapeseed meal in steers. Intestinal amino acid digestibility was assessed with an in situ ruminal incubation and precision-fed rooster bioassay. In this experiment one traditional rapeseed meal sample (sample A, prepress extraction) and three double low rapeseed meal samples (sample B, prepress extraction, sample C, screw press and sample D, low temperature press) were placed in polyester bags(8 cm${\times}$12 cm) and suspended in the ventral rumen of steers for 16 h. The residues of in situ incubations were intubated to roosters. Total excreta were collected for 48 h after incubation and then desiccated and amino acid concentrations were determined. Results showed that in ruminal incubation the degradation rate of amino acid and crude protein was higher for traditional rapeseed meal sample A than for double low rapeseed meal sample B, but was much lower than for double low sample C and D. In the group of double low rapeseed meal samples, sample D processed by low temperature press had the highest degradation rate of amino acids in the rumen. For all amino acids, the digestibility of the residual protein as measured by the precision-fed rooster bioassay tended to be lower for sample B than for sample A, which had the same processing method with sample B, and in the group of double low rapeseed meals, sample B had similar digestibility of amino acid in residual protein to sample D and higher than that of sample C. However, although the total amino acid availability involving the digestibility of amino acids in the rumen and rooster bioassay of double low rapeseed meal sample D (low temperature press) was higher than those of the other three samples by 7 to 9 percent, there were no significant differences. Results indicated that processing method markedly affected ruminal and post ruminal amino acid digestibility of rapeseed meal when the temperature exceeded 110$^{\circ}C$. Rapeseed meal that had a high content of fiber was not suitable for dry heat treatment at higher temperatures or the amino acids digestibility in rumen and total availability of amino acids could be reduced. Results also suggested the variety of rapeseed meal had no significant effect on the digestibility and availability of amino acids.

Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718 (초내열 합금 Inconel 718 열간 헤딩 공정에서의 조직 및 기계적 특성 변화)

  • Choi, Hong-Seok;Ko, Dae-Chul;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1373-1378
    • /
    • 2007
  • Metal forming ins the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading precess of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked produce. Die material is SKD61 and initial temperature is $300^{\circ}C$. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out suing DEFORM software before making the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is known that forming load was decreased according to decreasing punch velocity.

  • PDF

Evaluation of Mechanical Property and Microstructure of Forged and T6-treated 6061 Aluminum Alloy Wheel (자동차 휠용 6061 Al합금의 단조 및 T6 열처리 전후의 미세조직과 기계적 특성 평가)

  • Lee, J.H.;Jeong, H.S.;Yeom, J.T.;Kim, J.H.;Park, N.K.;Lee, Y.T.;Lee, D.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.354-359
    • /
    • 2007
  • Effects of forging and mechanical properties of 6061 aluminum alloy wheel for automobiles were investigated in the present study. Microstructural and tensile characteristics of automobile wheel after hot forging process using dynamic screw press were analyzed to evaluate effect of metal flow on mechanical properties. The results showed advanced mechanical properties of 6061 alloy wheel because of $Mg_2Si$ precipitation by T6, elongated grain by forging, and work hardening by dense metal flow, etc. Hot compression tests were conducted in order to characterize high temperature compression deformation behaviors and microstructural variation in the range of $300{\sim}450^{\circ}C$, in the strain rate range of $10^{-3}{\sim}10^1\;sec^{-1}$. As strain rate increased, maximum compression stress increased but it was shown the reverse linear relation between temperature and maximum stress irrelevant to strain rate variation. On the other hand, temperature and yield stress didn't have any linear relation and its relation showed big deviation by a function of strain rate and test temperature.

Study on the Mechanical Extraction Properties of Tobacco Stem Biomass (담배 주맥 바이오매스의 압착추출특성 연구)

  • Sung, Yong-Joo;Han, Young-Lim;Rhee, Moon-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.2
    • /
    • pp.65-72
    • /
    • 2008
  • This work evaluated the extractability of tobacco stem biomass for the papermaking type Reconstituted Tobacco Sheet(RTS). The effects of the soaking conditions on the hydration of stem biomass and the effects of the hydrated state on the mechanical extraction were investigated. In order to simulate the mechanical expression process of a papermaking type RTS mill, for example, the screw press process, the novel mechanical pressing analyzer was developed for this study. The hydration of stem biomass by soaking process was greatly affected by the soaking time and the soaking temperature. The longer soaking time and the higher soaking temperature resulted in the higher hydrated stem biomass. Since the higher hydrated stem had more combined water in the inner structure and resulted in the more flexible structure, the higher hydrated stem leaded to the more compressed filter cake and the higher water contents in the filter cake after the mechanical pressing. The pilot pulping experiments showed the difference in hydration and extractability between burley and bright tobacco stem. The bulkier structure of the burley stem resulted in the faster hydration by pilot pulping and leaded to the larger reduction in water soluble components. And the hydration process showed the major influence on the separation efficiency of water soluble components.

Transient analysis of two dissimilar FGM layers with multiple interface cracks

  • Fallahnejad, Mehrdad;Bagheri, Rasul;Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.277-281
    • /
    • 2018
  • The analytical solution of two functionally graded layers with Volterra type screw dislocation is investigated under anti-plane shear impact loading. The energy dissipation of FGM layers is modeled by viscous damping and the properties of the materials are assumed to change exponentially along the thickness of the layers. In this study, the rate of gradual change ofshear moduli, mass density and damping constant are assumed to be same. At first, the stress fields in the interface of the FGM layers are derived by using a single dislocation. Then, by determining a distributed dislocation density on the crack surface and by using the Fourier and Laplace integral transforms, the problem are reduce to a system ofsingular integral equations with simple Cauchy kernel. The dynamic stress intensity factors are determined by numerical Laplace inversion and the distributed dislocation technique. Finally, various examples are provided to investigate the effects of the geometrical parameters, material properties, viscous damping and cracks configuration on the dynamic fracture behavior of the interacting cracks.

Design of Hot Heading Process and Evaluation of Mechanical Properties of Alloy718 Coupling Bolt for Gas Turbine (가스터빈용 Alloy718 커플링볼트의 열간 헤딩 공정설계 및 기계적 특성 평가)

  • Choi, H.S.;Lee, J.M.;Ko, D.C.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.189-196
    • /
    • 2008
  • Alloy718 is the nickel-base super alloy well used as gas turbine components under severe operating conditions because of its high strength at high temperature and excellent creep resistance. In this study, a coupling bolt for the gas turbine component is manufactured by hot heading process instead of whole machining in order to improve the mechanical properties. Die shape for the hot heading has been designed by general design rule of hot forging and also optimal process condition has been investigated by finite element method. The initial billet temperature and the punch speed have been determined by $1150^{\circ}C$ and 600mm/s on the basis of finite element analysis, respectively. The coupling bolt has been manufactured by 200ton screw press and evaluated by experiment in order to investigate the mechanical properties. As a result of experiment, the mechanical properties such as hardness, tensile strength and creep behavior have been superior to those manufactured by machining.