• Title/Summary/Keyword: Screw

Search Result 2,442, Processing Time 0.031 seconds

Extraction of Quercetin and Its Glucosides from Onion Edible Part Using Solvent Extraction and Various Extraction Assisting Methods (용매 추출과 병용 추출법을 이용한 양파 과육으로부터 quercetin 관련물질의 추출)

  • Jin, Eun Young;Park, Young-Seo;Jang, Jae Kweon;Chung, Myong-Soo;Park, Hoon;Shim, Kun-Sub;Choi, Young Jin
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.147-153
    • /
    • 2009
  • Quercetin is one of the main flavonoids from onion. To use quercetin as a functional component for onion food products, the effects of various extraction assisting methods such as juicing methods, microwave, ultrasound and enzyme treatments on the yield of quercetin and its glucosides were investigated. For conventional solvent extraction, the highest yield of quercetin and its glycosides was achieved with 0.8 mL/g of 60% methanol at 50$^{\circ}C$ for 15 min. The juicing methods using mixer and screw showed no influence on the yield. Microwave and ultrasound treatments showed 2.14 times and 2.06 times more quercetin yields than non-treated extraction, respectively. For cellulase and viscozyme treatments, the highest yields of quercetin were achieved with 0.5 mL/g of 1% enzyme-0.1M sodium acetate (pH 5.2) buffer solution. Cellulase and viscozyme treatment improved quercetin yield 1.65 times and 2.29 times more than non-treated one, respectively.

Development of Well-reconstituted Instantized Thin Rice Gruel (재수화능이 향상된 인스턴트 쌀 미음의 제조)

  • Yang, Seung-Chul;Lee, Inae;Sun, Ju-Ho;Kim, Dong-Eun;Kang, Wie-Soo;Chung, Ha Sook;Shin, Malshick;Ko, Sanghoon
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.54-59
    • /
    • 2010
  • Instantized thin gruels have been popular to supplement patients who want nutritional, ready-to-eat, and easy-to-use products. In this study, rice-based thin gruels were developed by use of gelatinized rice powder which was manufactured by extrudating rice in a twin-screw extruder. Subsequently, the rice paste from the extruder were dried and ground into fine powder. The gelatinized rice powder was mixed with the powders of various grains, soy beans, nuts, oil seeds, and vegetables to formulate the instantized thin rice gruel with well-balanced nutrients (mixed powder). The mixed powder was granulated to improve reconstitution capability in a fluid bed spray granulator (granulated powder). Lipid and protein contents were higher by 0.9 and 1.9%, respectively, in the granulated powder whereas carbohydrate content was higher by 3.2% in the mixed powder. The calculated dispersibility was 93.7 and 77.0% for the granulated and the mixed powders, respectively. The reconstitution time was 122.3 and 305.3 for the granulated and the mixed powders, respectively. In conclusion, the granulation of the mixed powder improved the dispersibility. This study will be helpful to develop a variety of processed rice products and promote rice process industry.

Effect of Alkali Treatment Method and Concentration of Rice Straw on the Flexural Properties and Impact Strength of Rice Straw/Recycled Polyethylene Composites (볏짚/재활용폴리에틸렌 복합재료의 굴곡특성 및 충격강도에 미치는 볏짚의 알칼리처리 방법 및 농도의 영향)

  • Lee, Ki Young;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.87-95
    • /
    • 2019
  • In the present study, the effect of alkali treatment of rice straw on the flexural properties and impact strength of rice straw/recycled polyethylene composite was investigated. Alkali treatments were performed by means of two different methods at various sodium hydroxide (NaOH) concentrations. One is static soaking method and the other is dynamic shaking method. The composites were made by compression molding technique using rice straw/recycled polyethylene pellets produced by twin-screw extrusion process. The result strongly depends on the alkali treatment method and concentration. The shaking method done with a low concentration of 1 wt% NaOH exhibits the highest flexural and impact properties whereas the soaking method done with a high concentration of 10 wt% NaOH exhibits the highest properties, being supported qualitatively by the fiber-matrix interfacial bonding of the composites. The properties between the two highest property cases above-described are comparable each other. The study suggests that such a low concentration of 1 wt% NaOH may be used for alkali treatment of natural fibers to improve the flexural and impact properties of resulting composites, rather than using high concentrations of NaOH, 10 wt% or higher. Considering of environmental concerns of alkali treatment, the shaking method is preferable to use.

Fabrication of a Mach-Zehnder interferometer for education using a rotating glass plate and a 3D printer (회전 유리판과 3D 프린터를 이용한 교육용 마흐젠더 간섭계 제작)

  • Jang, Seong-Hun;Ju, Young-G
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.213-220
    • /
    • 2017
  • This paper proposes how to fabricate an educational Mach-Zehnder interferometer that is easy to align and inexpensive, using 3D printers and semiconductor lasers. The interferometer consists of a body $165mm{\times}120mm{\times}57mm$ in size, mirror mounts, a laser holder, beam splitters, and so on. The laser path is adjusted by 4 mirror mounts, each comprised of rubber bands, small metal wires, and a screw. The interference fringe is enlarged by the lens at the final stage. The refractive index of a slide glass was measured by counting the number of moving interference fringes while the slide glass, inserted into one of the two interferometer arms, is rotating. The formula for the refractive index as a function of the optical-path difference and rotation angle was obtained, and used to calculate the refractive index of glass from the interferometer experiment. The use of a rotating glass in one arm of the interferometer nullifies the need for a precision stage, which despite its high cost is often required to observe the moving interference fringe in the classroom. Therefore, the 3D-printed Mach-Zehnder interferometer proposed in this paper can be very useful for education, because of its affordability and performance. It enables students to perform both qualitative and quantitative studies using a 3D-printed interferometer, such as measuring the refractive index of a glass sample, and the wavelength of light.

A safe, stable, and convenient three-dimensional device for high Le Fort I osteotomy

  • Sugahara, Keisuke;Koyachi, Masahide;Odaka, Kento;Matsunaga, Satoru;Katakura, Akira
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.32.1-32.4
    • /
    • 2020
  • Background: Le Fort I osteotomy is a highly effective treatment for skeletal jaw deformities and is commonly performed. High Le Fort I osteotomy is a modified surgical procedure performed for improving the depression of the cheeks by setting the osteotomy higher than the conventional Le Fort I osteotomy. Developments in three-dimensional (3D) technology have popularized the use of 3D printers in various institutions, especially in orthognathic surgeries. In this study, we report a safe and inexpensive method of performing a high Le Fort I osteotomy using a novel 3D device and piezosurgery, which prevent tooth root injury without disturbing the operation field for patients with a short midface and long tooth roots. Results: A 17-year-old woman presented with facial asymmetry, mandibular protrusion, a short midface, and long tooth roots. We planned high Le Fort I osteotomy and bilateral sagittal split ramus osteotomy. Prevention of damage to the roots of the teeth and the infraorbital nerve and accurate determination of the posterior osteotomy line were crucial for clinical success. Le Fort I osteotomy using 3D devices has been reported previously but were particularly large in size for this case. Additionally, setting the fixing screw of the device was difficult, because of the risk of damage to the roots of the teeth. Therefore, a different surgical technique, other than the conventional Le Fort I osteotomy and 3D device, was required. The left and right parts of the 3D device were fabricated separately, to prevent any interference in the surgical field. Further, the 3D device was designed to accurately cover the bone surface from the piriform aperture to the infra-zygomatic crest with two fixation points (the anterior nasal spine and the piriform aperture), which ensured stabilization of the 3D device. The device is thin and does not interfere with the surgical field. Safe and accurate surgical performance is possible using this device and piezosurgery. The roots of the teeth and the infraorbital nerve were unharmed during the surgery. Conclusions: This device is considerably smaller than conventional devices and is a simple, low-cost, and efficient method for performing accurate high Le Fort I osteotomy.

The Effect of Nicotine on the Proliferation and Differentiation of Normal Human Osteoblast at the Surface of Implants (임플란트 표면에서 배양된 정상인 조골세포의 증식 및 분화에 미치는 니코틴의 영향)

  • Ahn, Tae Woong;Lee, Chong Heon
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.42 no.5
    • /
    • pp.111-118
    • /
    • 2018
  • Nicotine of tobacco component has a controversial impact in the clinical outcome of dental implants. Although numerous nicotine effects on bone healing around implants have been presented, it is rarely reported in vitro study about normal human osteoblast(NHost) from oral and maxillofacial area at the surface of implants. The purpose of the present study was to evaluate the effect of nicotine on the proliferation and differentiation response of NHost to plasmatic and salivary levels of nicotine reported in smokers at the surface of screw-type plasma-sprayed titanium implants. NHosts were seeded on the surface of titanium implants and cultured for 21 days in ${\alpha}-MEM$ supplemented with 10% FBS, 50mg/ml ascorbic acid, 5mM ${\beta}$-glycerophosphate and 100nM dexamethasone. Seeded implants were exposed to various nicotine concentration(0.05-0.5mg/ml) from 1 to 21 days, and characterized for cell morphology, proliferation, differentiation, alkaline phosphatase(ALP) activity and ionized calcium concentration(Cai) of medium. Continuous exposure to higher nicotine concentration(above 0.3mg/ml) induced a dose- and time-dependent vacuolation of the cytoplasm, and a tendency to detach from the implant surface. 0.05mg/ml(lower nicotine concentration) did not cause significant effects in the cell proliferation and ALP activity. 0.1-0.2mg/ml caused evident dose-dependent effects in increased cell proliferation, ALP activity and earlier onset of matrix mineralization at levels up to 0.2mg/ml, while a dose-dependent inhibitory effect at 0.3-0.5mg/ml. Cai concentration of control group was decreased at 14 days. Increased Cai concentration at 0.1-0.2mg/ml, decreased Cai concentration at 0.3mg/ml and no change at 0.5mg/ml during the culture period were seen. It suggested that nicotine concentration could paly an role in modulating NHost activity as a contributing factor associated with proliferation and differentiation of NHost at the surface of implants.

Saccharification Characteristics of Extruded Corn Starch at Different Process Parameters (압출성형 공정변수에 따른 옥수수전분 팽화물의 당화특성)

  • Lee, Kyu-Chul;Kim, Yeon-Soo;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.155-161
    • /
    • 2011
  • The aim of this study was to determine the effects of different extrusion conditions on the saccharification characteristics( initial reaction velocity, reaction rate constant, yield) of extruded corn starch. Extruded corn starch-water slurries were mixed with alpha-amylase for the enzymatic saccharification. The saccharification yield of extruded corn starch was high at lower feed moisture content and higher barrel temperature. The solubility of extrudates increased with increase in the SME input which increased with increase in the feed moisture content. Starch hydrolysates having DE 63.8 was obtained after 2 hr reaction. The initial reaction velocity of the extrudate slurry with alpha-amylase was higher with decrease in the feed moisture content. The initial reaction velocity of extruded corn starch was the highest ($2.26{\times}10^{-3}mmol/mL{\cdot}min$) at 25% feed moisture content and $120^{\circ}C$ barrel temperature, 250 rpm screw speed. The pregelatinized starch was $1.83{\times}10^{-3}mmol/mL{\cdot}min$ as a control. Reaction rate constant was a similar trend to initial reaction velocity.

Sectoral System of Innovation and R&D Support Service: Focused on the Case of NUC Electronics (산업별 혁신시스템과 R&D 지원서비스 : 엔유씨전자 사례를 중심으로)

  • Kim, Yong-yul
    • Journal of Korea Technology Innovation Society
    • /
    • v.22 no.3
    • /
    • pp.362-381
    • /
    • 2019
  • The purpose of this study is to examine how two factors among various affecting factors of technological innovation, i.e. sectoral system of innovation and R&D support service, were actually applied in the case of NUC Electronics. This company has achieved high level of innovation performance through change of injection port and improvement of extracting rate. This was possible because each component of sectoral system of innovation system was matched with the innovation activity. The improvement of the performance in NUC Electronics was attributable to its own innovation efforts and R&D support service of government research institute. In the process of technological innovation, the company could receive high-level services in areas such as product design and virtual experiments that companies can not solve themselves. It can be said that the role of government and public institutions to support the shortage of SMEs was important. In terms of each component of sectoral system of innovation, we found that there were many opportunities of new technology; sustainability was low; imitation was easy; appropriability was low but it has dualily; accumulation of technology was relatively high, availability of external knowledge was high. At the same time, both of the company and the network played an important role, and market conditions were very favorable. In terms of R&D support services, it is a direct effect that a great deal of time and cost savings have been achieved through virtual experiments on the material and shape of the screw. As an indirect effect, the core competence of the company has been greatly strengthened by utilizing the momentum of technology development through external support, hence the company could establish the structure of virtuous circle of innovation.

CFD Simulation of the Self-propulsion of a damaged Car Ferry in Waves (손상된 카페리 선박의 파랑중 자항상태 CFD 해석)

  • Kim, Je-In;Park, Il-Ryong;Kim, Jin;Kim, Kwang-Soo;Kim, Yoo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.34-46
    • /
    • 2019
  • This paper provides the numerical results for the self-propulsion performance in waves of a car ferry vessel with damage in one of its twin-screw propulsion systems without flooding the engine room. The numerical simulations were carried out according to the Safe Return to Port (SRtP) regulation made by the Lloyd's register, where the regulation requires that damaged passenger ships should have an ability to return to port with a speed of 6 knots in a Beaufort 8 sea condition. For the validation of the present numerical analysis study, the resistance performance and the self-propulsion performance of the car ferry in intact and damaged conditions in calm water were calculated, which showed a satisfactory agreement with the model test results of Korea Research Institute of Ship and Ocean engineering (KRISO). Finally, the numerical simulation of self-propulsion performance in waves of the damaged car ferry ship was carried out for a normal sea state and for a Beaufort 8 sea state, respectively. The estimated average Brake Horse Power (BHP) for keeping the damaged car ferry ship advancing at a speed of 6 knots in a Beaufort 8 sea state reached about 47% of BHP at MCR condition or about 56% of BHP at NCR condition of the engine determined at the design state. In conclusion, it can be noted that the engine power of the damaged car ferry ship in single propulsion condition is sufficient to satisfy the SRtP requirement.

Full mouth rehabilitation of patient with severe dental caries with implant fixed prosthesis fabricated with milling and 3D printing method: A case report (밀링 및 3D 프린팅 방법으로 제작된 임플란트 보철물을 이용한 심한 우식 환자의 완전 구강 회복 증례)

  • Kim, Taeyoon;Lee, Jun-Suk;Hong, Seoung-Jin;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.288-295
    • /
    • 2019
  • Passive fit of prosthesis is an essential property of implant supported prosthesis for long term success and minimization of complications. And the property is determined mostly by fabrication procedure. There were limitations of extensive implant prosthesis because conventional casting method generate contraction error of long span prosthesis. However, Computer-aided design/Computer-aided manufacturing (CAD/CAM) technology of 3D printing and milling metal framework can overcome those limitations. This case is a full mouth rehabilitation using extensive implant fixed prosthesis. Removable interim prosthesis was made for esthetic, functional evaluation and a guide for implant insertion. After the insertion, implant fixed interim prosthesis was delivered. After additional evaluation and adjustment, final prosthesis was designed with CAD, the fabricated with CAM. Milling technique was used for anterior screw type implant superstructure and 3D printing technique was used for the anterior and posterior implant copings. Fit of the final restoration was favorable. The practitioner and patient were both esthetically and functionally satisfied with the final result.