• Title/Summary/Keyword: Screen printed electrode

Search Result 96, Processing Time 0.031 seconds

Nano composite System based on ZnO-functionalized Graphene Oxide Nanosheets for Determination of Cabergoline

  • Beitollahi, Hadi;Tajik, Somayeh;Alizadeh, Reza
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • In this paper we report an electrochemical sensor based on ZnO-functionalized graphene oxide nanocomposite (ZnO-GO) for the sensitive determination of the cabergoline. Cabergoline electrochemical behaviors were investigated by cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV). The modified electrode shows electrocatalytic activity toward cabergoline oxidation in phosphate buffer solution (PBS) (pH 7.0) with a reduction of the overpotential of about 180 mV and an increase in peak current. The DPV data showed that the obtained anodic peak currents were linearly dependent on the cabergoline concentrations in the range of $1.0-200.0{\mu}M$, with the detection limit of $0.45{\mu}M$. The prepared electrode was successfully applied for the determination of cabergoline in real samples.

Contact Resistance Analysis of High-Sheet-Resistance-Emitter Silicon Solar Cells (고면저항 에미터 결정질 실리콘 태양전지의 전면전극 접촉저항 분석)

  • Ahn, Jun-Yong;Cheong, Ju-Hwa;Do, Young-Gu;Kim, Min-Seo;Jeong, Ji-Weon
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • To improve the blue responses of screen-printed single crystalline silicon solar cells, we investigated an emitter etch-back technique to obtain high emitter sheet resistances, where the defective dead layer on the emitter surface was etched and became thinner as the etch-back time increased, resulting in the monotonous increase of short circuit current and open circuit voltage. We found that an optimal etch-back time should be determined to achieve the maximal performance enhancement because of fill factor decrease due to a series resistance increment mainly affected by contact and lateral resistance in this case. To elucidate the reason for the fill factor decrease, we studied the resistance analysis by potential mapping to determine the contact and the lateral series resistance. As a result, we found that the fill factor decrease was attributed to the relatively fast increase of contact resistance due to the dead layer thinning down with the lowest contact resistivity when the emitter was contacted with screen-printed silver electrode.

  • PDF

Electrochemical Immunoassay for Detecting Hippuric Acid Based on the Interaction of Osmium-Antigen Conjugate Films with Antibody on Screen Printed Carbon Electrodes

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1485-1490
    • /
    • 2012
  • An electrochemical immunoassay based on osmium-hippuric acid (HA) conjugate films onto the electrode is presented for the detection of urinary HA. This is the first report on the use of the oxidative electropolymerization of 5-amino-1,10-phenanthroline (5-$NH_2$-phen) for immobilizing an antigen, osmium-conjugated HA. As a redox mediator, [Os(5-amino-1,10-phenanthroline)$_2$(4-aminomethylpyridine-HA)Cl]$^{+/2+}$ (Os-phen-HA) was successfully synthesized and electropolymerized onto the screen-printed carbon electrodes (SPCEs). The interaction between osmium-HA conjugate films and antibody-HA ($anti$-HA) was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The electrical signals were linearly proportional to urinary HA in the range of 0.1-5.0 mg/mL, which is sufficient for use as an immunosensor using a cutoff concentration of 2.0 mg/mL in urine samples. The proposed electrochemical immunoassay method can be extended to various applications for detecting a wide range of different small antigens in the health care area.

CONTACT RESISTANCE ANALYSIS OF HIGH-SHEET-RESISTANCE-EMITTER SILICON SOLAR CELLS (고면저항 에미터 결정질 실리콘 태양전지의 전면전극 접촉저항 분석)

  • Ahn, Jun-Yong;Cheong, Ju-Hwa;Do, Young-Gu;Kim, Min-Seo;Jeong, Ji-Weon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.390-393
    • /
    • 2008
  • To improve the blue responses of screen-printed single crystalline silicon solar cells, we investigated an emitter etch-back technique to obtain high emitter sheet resistances, where the defective dead layer on the emitter surface was etched and became thinner as the etch-back time increased, resulting in the monotonous increase of short circuit current and open circuit voltage. We found that an optimal etch-back time should be determined to achieve the maximal performance enhancement because of fill factor decrease due to a series resistance increment mainly affected by contact and lateral resistance in this case. To elucidate the reason for the fill factor decrease, we studied the resistance analysis by potential mapping to determine the contact and the lateral series resistance. As a result, we found that the fill factor decrease was attributed to the relatively fast increase of contact resistance due to the dead layer thinning down with the lowest contact resistivity when the emitter was contacted with screen-printed silver electrode.

  • PDF

Effects of $TiO_2$ electrode paste components on conversion efficiency of dye-sensitized solar cells ($TiO_2$ 광전극 paste의 구성 물질 함유량에 따른 염료감응 태양전지의 효율변화)

  • Ryu, Kyoung-Jin;Song, Sang-Woo;Lee, Kyung-Ju;Kim, Ji-Hong;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.226-226
    • /
    • 2010
  • The effects of paste components on the properties of porous $TiO_2$ film electrodes prepared through screen-printing technique were investigated in order to efficiently control and optimize the main fabrication step of the dye-sensitized solar cells (DSC). The screen-printed porous $TiO_2$ films were characterized by ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM), and applied as a part of the DSC for the energy conversion. The fabricated DSC were evaluated by a solar simulator. The experimental results indicate that the microstructural characteristics of the printed films and the performances of the DSC are dependent on the paste compositions. As a result that the efficiency of DSC prepared by manufactured paste was 0.5%~1% higher than existing paste.

  • PDF

Effect of Surface Pyramids Size on Mono Silicon Solar Cell Performance

  • Kim, Hyeon-Ho;Kim, Su-Min;Park, Seong-Eun;Kim, Seong-Tak;Gang, Byeong-Jun;Tak, Seong-Ju;Kim, Dong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.100.2-100.2
    • /
    • 2012
  • Surface texturing of crystalline silicon is carried out in alkaline solutions for anisotropic etching that leads to random pyramids of about $10{\mu}m$ in size. Recently textured pyramids size gradually reduced using new solution. In this paper, we investigated that texture pyramids size had an impact on emitter property and front electrode (Ag) contact. To make small (${\sim}3{\mu}m$) and large (${\sim}10{\mu}m$) pyramids size, texturing times control and one side texturing using a silicon nitride film were carried out. Then formation and quality of POCl3-diffused n+ emitter in furnace compare with small and large pyramids by using SEM images, simulation (SILVACO, Athena module) and emitter saturation current density (J0e). After metallization, Ag contact resistance was measured by transfer length method (TLM) pattern. And surface distributions of Ag crystallites were observed by SEM images. Also, performance of cell which is fabricated by screen-printed solar cells is compared by light I-V.

  • PDF

무전해 도금을 적용한 결정질 실리콘 태양전지의 효율 향상

  • Jeong, Myeong-Sang;Jang, Hyo-Sik;Song, Hui-Eun;Gang, Min-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.686-686
    • /
    • 2013
  • Crystalline silicon solar cell is a semiconductor device that converts light into electrical energy. Screen printing is commonly used to form the front/back electrodes in silicon solar cell. Screen printing method is convenient but usually shows high resistance and low aspect ratio, which cause the efficiency decrease in crystalline silicon solar cell. Recently the plating method is applied in c-Si solar cell to reduce the resistance and improve the aspect ratio. In this paper, we investigated the effect of additional electroless Ag plating into screen-printed c-Si solar cell and compared their electrical properties. All wafers used in this experiment were textured, doped, and anti-reflection coated. The electrode formation was performed with screen-printing, followed by the firing step. Aften then we carried out electroless Ag plating by changing the plating time in the range of 20 sec~5 min and light intensity. The light I-V curve and optical microscope were measured with the completed solar cell. As a result, the conversion efficiency of solar cells was increased mainly due to the decreased series resistance.

  • PDF

Screen-printed carbonaceous matrrials for photocapacitor electrode (스크린 프린터에 의한 광캐패시터용 카본 전극 제작)

  • Choi, Woo-Jin;Kwak, Dong-Joo;Sung, Youl-Moon;Ha, Soon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.411-414
    • /
    • 2009
  • Photo-capacitor electrodes are attracting great attention because of their high capacitance and potential applications in electronic devices. Carbon capacitor, active carbon capacitor and its combination will be fabricated using simple sandwich capacitor electrode method as carbonaceous material on each type of capacitor electrodes with 20 ${\times}$ 15 mm cell size. Carbon/active carbon cell was fabricated using sol-gel process with 120oC dry temperature in l hour and using sintering process with 500oC in 2 hour. The effect of sintering temperature on carbon properties was also investigated with X-ray diffraction technique to get the best sintering temperature. The detail of fabrication process will be explained. Elemental composition in electrode material can be measured using quantitative spectroscopic as and a cyclic voltammetric technique was used to study the combined effects of electrode material and effect of annealing temperature and also time on the capacitance of thermally treated in capacitor electrode. In this work, characterization impedance technique is used to measurement of capacitance and giving complementary results. Active carbon as carbonaceous material has a better capacitance in charge/discharge process with mean thickness $32{\mu}m$ and with particle size $1{\mu}m$ to $4.5{\mu}m$ in 20 ${\times}$ 15 mm sample size of capacitor electrode.

  • PDF

Effects of Deposition Method of Thermally Decomposed Platinum Counter Electrodes on the Performance of Dye-Sensitized Solar Cells (염료 감응형 태양전지 효율에 미치는 백금 상대 전극 제조공정의 영향)

  • SEO, HYUN WOO;BAEK, HYUN DUK;KIM, DONG MIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this work, two different platinum (Pt) counter electrodes have been prepared by spin coating a Pt solution and screen printing a Pt paste on fluorine doped tin oxide (FTO) glass substrate followed by sintering at $380^{\circ}C$ for 30 min. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) analyses of the Pt electrodes showed that the spin coated electrode was catalytically more active than the screen printed electrode. The above result agrees well with the surface morphology of the electrodes studied by atomic force microscopy (AFM) and the photovoltaic performance of the dye-sensitized solar cells (DSSCs) fabricated with the Pt electrodes. Moreover, calculation of current density-voltage (j-V) curves according to diode model with the parameters obtained from the experimental j-V curves and the EIS data of the DSSCs provided a quantitative insight about how the catalytic activity of the counter electrodes affected the photovoltaic performance of the cells. Even though the experimental situations involved in this work are trivial, the method of analyses outlined here gives a strong insight about how the catalytic activity of a counter electrode affects the photovoltaic performance of a DSSC. This work, also, demonstrates how the photovoltaic performance of DSSCs can be improved by tuning the performance of counter electrode materials.

Electrochemical Immobilization of Osmium Complex onto the Carbon Nano-Tube Electrodes and its Application for Glucose sensor (전기화학적인 방법을 이용한 탄소나노튜브 전극상의 오스뮴 착물의 고정화 및 혈당센서에 관한 응용)

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • The multi-wall carbon nano-tube composite mixed with carbon paste electrode presented more sensitive and selective amperometric signals in the oxidation of glucose than general screen-printed carbon electrodes(SPCEs). Redox mediators to transport electrodes from enzyme to electrodes are very important part in the biosensor. A novel osmium redox complex was synthesized by the coordinating pyridine group containing primary amines which were electrochemically immobilized onto the MWCNT-SPCEs surface. Electrochemical studies of osmium complexes were investigated by cyclic voltammetry, chronoamperometry. The surface coverage of osmium complexes on the modified carbon nano-tube electrodes were significantly increased at 100 time (${\tau}_0=2.0\;{\times}\;10^{-9}\;mole/cm^2$) compared to that of the unmodified carbon electrodes. It's practical application of the glucose biosensor demonstrated that it shows good linear response to the glucose concentration in the range of 0-10 mM.