• 제목/요약/키워드: Screen Printing Method

검색결과 383건 처리시간 0.03초

Indium 첨가된 SnO2 후막형 가스센서의 특성 (Characteristics of Indium Doped SnO2 Thick Film for Gas Sensors)

  • 유일;이지영
    • 한국재료학회지
    • /
    • 제20권8호
    • /
    • pp.408-411
    • /
    • 2010
  • Indium doped $SnO_2$ thick films for gas sensors were fabricated by a screen printing method on alumina substrates. The effects of indium concentration on the structural and morphological properties of the $SnO_2$ were investigated by X-ray diffraction and Scanning Electron Microscope. The structural properties of the $SnO_2$:In by X-ray diffraction showed a (110) dominant $SnO_2$ peak. The size of $SnO_2$ particles ranged from 0.05 to $0.1\;{\mu}m$, and $SnO_2$ particles were found to contain many pores, according to the SEM analysis. The thickness of the indium-doped $SnO_2$ thick films for gas sensors was about $20\;{\mu}m$, as confirmed by cross sectional SEM image. Sensitivity of the $SnO_2$:In gas sensor to 2000 ppm of $CO_2$ gas and 50 ppm of H2S gas was investigated for various indium concentrations. The highest sensitivity to $CO_2$ gas and H2S gas of the indium-doped $SnO_2$ thick films was observed at the 8 wt% and 4 wt% indium concentration, respectively. The good sensing performances of indium-doped $SnO_2$ gas sensors to $CO_2$ gas were attributed to the increase of oxygen vacancies and surface area in the $SnO_2$:In. The $SnO_2$:In gas sensors showed good selectivity to $CO_2$ gas.

결정질 실리콘 태양전지 도핑 확산 공정에서 시간과 온도 변화에 의한 Drive-in 공정 연구 (Optimization of Drive-in Process with Various Times and Temperatures in Crystalline Silicon Solar Cell Fabrication)

  • 이희준;최성진;명재민;송희은;유권종
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.51-55
    • /
    • 2011
  • In this paper, the optimized doping condition of crystalline silicon solar cells with 156 ${\times}$ 156 mm2 area was studied. To optimize the drive-in condition in the doping process, the other conditions except drive-in temperature and time were fixed. After etching 7 ${\mu}m$ of the surface to form the pyramidal structure, the silicon nitride deposited by the PECVD had 75~80 nm thickness and 2 to 2.1 for a refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in $400-425-450-550-850^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Drive-in temperature was changed in range of $828^{\circ}C$ to $860^{\circ}C$ and time was from 3 min to 40 min. The sheet resistance of wafer was fixed to avoid its effect on solar cell. The solar cell fabricated with various conditions showed the similar conversion efficiency of 17.4%. This experimental result showed the drive-in temperatures and times little influence on solar cell characteristics.

  • PDF

단결정 실리콘 태양전지의 도핑 최적화를 위한 확산 온도에 대한 연구 (Optimization of Drive-in Temperature at Doping Process for Mono Crystalline Silicon Solar Cell)

  • 최성진;송희은;유권종;유진수;한규민;권준영;이희덕
    • 한국태양에너지학회 논문집
    • /
    • 제31권1호
    • /
    • pp.37-43
    • /
    • 2011
  • In this paper, the optimized doping condition of crystalline silicon solar cells with $156{\times}156\;mm^2$ area was studied. To optimize the drive-in temperature in the doping process, the other conditions except variable drive-in temperature were fixed. These conditions were obtained in previous studies. After etching$7\;{\mu}m$ of the surface to form the pyramidal structure, the silicon nitride deposited by the PECVD had 75~80nm thickness and 2 to 2.1 for a refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in 400-425-450-550-$850^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Drive-in temperature was changed in range of $830^{\circ}C$ to $890^{\circ}C$to obtain the sheet resistance $30{\sim}70\;{\Omega}/{\box}$ with $10\;\Omega}/{\box}$ intervals. Solar cell made in $890^{\circ}C$ as the drive-in temperature revealed 17.1% conversion efficiency which is best in this study. This solar cells showed $34.4\;mA/cm^2$ of the current density, 627 mV of the open circuit voltage and 79.3% of the fill factor.

금속 산화물을 포함한 탄소반죽 전극 어레이로 제작한 전자 혀 (Amperometric Electronic Tongue Based on Metal Oxide Containing Carbon Paste Electrode Array)

  • 한종호;김동선;김종식;윤인준;차근식;남학현
    • 전기화학회지
    • /
    • 제7권4호
    • /
    • pp.206-210
    • /
    • 2004
  • 금속산화물 $(TiO_2,\;RuO_2,\;PbO_2,\;Ni(OH)_2)$과 Prussian blue (PB)를 각각 탄소반죽에 혼합한 후 스크린 프린팅 기법으로 6종의 탄소반죽 전극들을 제작하였다. 제작된 탄소반죽 전극들로 전자혀 시스템을 제작하여 다양한 음료수와 식품에 대한 감응을 0.1M carbonate buffer, pH 9.6완충 용액에 묽힌 후 대시간전류법의 방법으로 측정하였다 얻어진 자료를 주성분 분석법 (principal component analysis; PCA)으로 처리한 후 식음료의 맛을 평가할 수 있도록 2차원 좌표계에 표시하였으며, 그 결과 본 실험에서 제작한 시스템 및 분석법은 다양한 식음료의 종류를 뚜렷이 구분해 낼 수 있음을 확인하였다.

DMMP 검출용 금속산화물을 첨가한 $SnO_2$ 가스센서 제조 (Fabrication of $SnO_2$ Gas Sensor added by Metal Oxide for DMMP)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • 한국군사과학기술학회지
    • /
    • 제6권3호
    • /
    • pp.54-61
    • /
    • 2003
  • $SnO_2$ gas sensor for the detection DMMP, simulant of nerve gas was fabricated and its characteristics were examined. Sensing materials were $SnO_2$ added by TEX>$\alpha$-$Al_{2}O_{3}$ with 0∼20wt.% and $In_{2}O_{3}$ with 0∼3wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Its dimension was 7$\times$10$\times$0.6$\textrm{mm}^2$. Crystallite size 8t phase identification, specific surface area and morphology of fabricated $SnO_2$ powders were analyzed by X-ray diffraction(XRD), surface area analyzer(BET) and by a scanning electron microscope(SEM), respectively. Sensor was measured as flow type and sensor resistance change was monitored as real time using LabVIEW program. The best sensitivities were 75% at adding 4wt.% TEX>$\alpha$-$Al_{2}O_{3}$, operating temperature $300^{\circ}C$ and 87% at adding 2wt.% $In_{2}O_{3}$, operating temperature $350^{\circ}C$ to DMMP 0.5ppm. Response and recovery times were about 1 and 3 min., respectively. Repetition measurement was very good with $\pm$3% in full scale. As a result, operating temperature was lower TEX>$\alpha$-$Al_{2}O_{3}$ than $In_{2}O_{3}$, but sensitivity was higher $In_{2}O_{3}$ than $\alpha$-$Al_{2}O_{3}$.

감광성 CNT paste에 대한 저에너지 Ball Milling 처리 효과 (Effect of Ball Milling on Photosensitive Carbon Nanotube Pastes and Their Field Emission Properties)

  • 장은수;이한성;이내성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.154-154
    • /
    • 2008
  • Although the screen printing technology using photosensitive carbon nanotube (CNT) paste has many advantages such as low cost, simple process, uniform emission, and capability of mass production, the CNT paste needs to be improved further in CNT dispersion, printability, adhesion, electrical conductivity, population of CNT emitters, etc. Ball milling has been frequently employed to prepare the CNT paste as ball milling can mix its ingredients very well and easily cut the long, entangled CNTs. This study carried out a parametric approach to fabricating the CNT paste in terms of low-energy ball milling and a paste composition. Field emission properties of the CNT paste was characterized with CNT dispersion and electrical conductivity which were measured by a UV-Vis spectrophotometer and a 4-point probe method, respectively. Main variables in formulating the CNT paste include a length of milling time, and amounts of CNTs and conductive inorganic fillers. In particular, we varied not only the contents of conductive fillers but also used two different sizes of filler particles of ${\mu}m$ and nm ranges. Among many variations of conductive fillers, the best field emission characteristics occurred at the 5 wt% fillers with the mixing ratio of 3:1 for ${\mu}m$-and nm-sizes. The amount and size of fillers has a great effect on the morphology, processing stability, and field emission characteristics of CNT emitter dots. The addition a small amount of nm-size fillers considerably improved the field emission characteristics of the photosensitive CNT paste.

  • PDF

백색 LED용 색변환 렌즈의 열처리 온도 및 코팅 두께에 따른 영향 (Effect of Heat Treatment Temperature and Coating Thickness on Conversion Lens for White LED)

  • 이효성;황종희;임태영;김진호;정현석;이미재
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.533-538
    • /
    • 2014
  • Today, silicon and epoxy resin are used as materials of conversion lenses for white LEDs on the basis of their good bonding and transparency in LED packages. But these materials give rise to long-term performance problems such as reaction with water, yellowing transition, and shrinkage by heat. These problems are major factors underlying performance deterioration of LEDs. In this study, in order to address these problems, we fabricated a conversion lenses using glass, which has good chemical durability and is stable to heat. The fabricated conversion lenses were applied to a remote phosphor type. In this experiment, the conversion lens for white LED was coated on a glass substrate by a screen printing method using paste. The thickness of the coated conversion lens was controlled during 2 or 3 iterations of coating. The conversion lens fabricated under high heat treatment temperature and with a thin coating showed higher luminance efficiency and CCT closer to white light than fabricated lenses under low heat treatment temperature or a thick coating. The conversion lens with $32{\mu}m$ coating thickness showed the best optical properties: the measured values of the CCT, CRI, and luminance efficiency were 4468 K, 68, and 142.22 lm/w in 20 wt% glass frit, 80 wt% phosphor with sintering at $800^{\circ}C$.

소성 조건에 따른 WO$_3$계 후막센서소자의 제조 및 응답특성 (Fabrication and Gas Sensing Properties of WO$_3$Thick Film Gas Sensor Dependent on Heat-Treatment Condition)

  • 정용근;엄우식;이희수;최성철
    • 마이크로전자및패키징학회지
    • /
    • 제6권2호
    • /
    • pp.63-68
    • /
    • 1999
  • 가스 감지막의 미세구조와 비화학량론 구조의 변화에 따른 응답특성의 거동을 고찰하기 위하여 소성 조건을 변화시키면서 $WO_3$후막형 가스센서를 제조하였다. 소자는 감지물질인 $WO_3$분말과 유기 용제를 균일하게 혼합한 페이스트를 Au전극과 $RuO_2$발열체가 입혀진 알루미나 기판 위에 스크린 프린팅 방법으로 제조하였다. 소성 조건을 변화시키기 위하여 600-$800^{\circ}C$ 온도범위하에서 1시간 동안 열처리 하였고, Ar과 $O_2$가스의 비율을 변화시키면서 $700^{\circ}C$에서 1시간 재열처리하였다. 열처리 결과, 소성 온도 $700^{\circ}C$에서 제조된 $WO_3$가스센서 소자가 가스감도 210, 응답속도 2초로 가장 좋은 특성을 보였으며 Ar과 $O_2$가스의 비율이 40-50%의 소성 분위기에서 가스 감도가 가장 높게 나타났다.

  • PDF

수계 바인더를 이용한 NiCuZn Ferrite의 슬러리 제조 (The Preparation of NiCuZn Ferrite Slurry Using the Water Mixed Binder System)

  • 류병환;이정민;고재천
    • 자원리싸이클링
    • /
    • 제7권4호
    • /
    • pp.35-42
    • /
    • 1998
  • 오늘날 전자부품 산업에 실장기술은 크게 각광을 받고 있다. 페라이트 칩인덕터와 같이 전자부품의 소형화를 위해서는, 쉬트 적층법이나 스크린 인쇄법 등을 위하여 유기용매를 사용하는 세라믹 습식공정이 널리 사용되고 있다. 본연구에서는 물이 혼합된 용매계를 이용한 NiCuZn Ferrite(NCZF) 슬러리와 그린쉬트의 제조 및 평가에 관한 연구를 하였다. 볼밀링에 의하여 21 vol%의 NCZF 슬러리를 제조하였으며, polacrylic vinyl copolymer를 바인더로서 사용하였다. 용매로서는 isopropyl alcohol과 2-butoxy ethanol에 40∼80% 물을 혼합하여 사용하였다. 그 결과, NCZF 슬러리의 분산안정성은 입자의 정전기적 힘보다는 free polymer에 의해 나타났으며, 슬러리의 점성은 용매중의 물함량에 크게 의존하였다.

  • PDF

$Dy_{2}O_{3}$가 첨가된 (Ba,Sr,Ca)$TiO_3$ 후막의 구조 및 유전 특성 (Structural and Dielectric Properties of (Ba,Sr,Ca)$TiO_3$ Thick films Doped with $Dy_{2}O_{3}$)

  • 윤상은;이성갑;박상만;노현지;이영희;배선기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1275-1276
    • /
    • 2007
  • For fabrication of $BaTiO_3$ system Ferroelectric thick films, (Ba,Sr,Ca)$TiO_3$ (BSCT) powders, prepared by using the alkoxide-based sol-gel method, were doped $MnCO_3$ as acceptor and $Dy_{2}O_{3}$ as donor. $MnCO_3$ and $Dy_{2}O_{3}$-doped (Ba,Sr,Ca)$TiO_3$ thick films were fabricated by screen printing techniques on high purity alumina substrates. The structure and dielectric properties were investigated with variation of $Dy_{2}O_{3}$ amount. As a result of the differential thermal analysis(DTA), exothermic peak was observed at around $670^{\circ}C$ due to the formation of the polycrystalline perovskite phase. All the BSCT thick films, sintered at $1420^{\circ}C$ for 2h, showed the typical XRD patterns of perovskite polycrystalline structure and no pyrochlore phase was observed. The average grain size and thickness of specimens no doped with $Dy_{2}O_{3}$ was 1.32mm, 52mm, respectively. The relative dielectric constant decreased and dielectric loss increased with increasing amount of $Dy_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Dy_{2}O_{3}$ were 4043 and 0.4% at 1 kHz, respectively. The relative dielectric constant gradually decreased in the measured frequency range from 0.1 to 100 kHz

  • PDF