• Title/Summary/Keyword: Scratch electrode

Search Result 8, Processing Time 0.027 seconds

Fabrication of LTCC Multi-layer Circuit Board made of Glass-Al2O3 Composites (Glass-Al2O3 복합소재를 원료로 한 LTCC 다층회로 기판의 제조)

  • Kwak, Hun;Jeon, Hyung-Do;Kim, Hwan;Lee, Won-Jae;Shin, Byoung-Chul;Kim, Il-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.509-516
    • /
    • 2008
  • Multi-layer circuit card for semiconductor inspection was fabricated by LTCC technology. After a proper impedance design without electrical interference, ceramic tapes with the composition of $CaO-Al_2O_3-SiO_2-B_2O_3$ glass and $Al_2O_3$ were prepared. The electrode with silver paste printed on the tape. Printed ceramic sheets were then laminated and sintered. Densities and dielectric properties were measured. The microstructure, fracture surface of the region of via and matching state of substrate-electrode were observed. The durability of plated outside electrode were examined by hardness and scratch test.

Research and Development of Electrode Surface Inspection System (전극 표면 검사 장치 연구 개발)

  • Oh, Choonsuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.123-128
    • /
    • 2016
  • In manufacturing processing of a secondary battery, the visual inspection system is studied and developed to check the surface defects of the electrode plates. It consists of two parts, one is the hardware control and the other software implementation. The former is made up to the system configuration and the design of the optical system, the illuminations and the controllers. The latter is the detection algorithms of the surface defects. This system achieves the quality improvement of the electrode process and the price competitiveness. By using the proposed defects detection algorithms this system demonstrates the high reliability of spot, line, manhole, extraneous substance, scratch, and crater defect of a electrode plate surface.

Repassivation Behavior of Ni Base Alloys in a Mild Alkaline Water at 300℃

  • Hwang, Seong Sik;Kim, Dong Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.85-89
    • /
    • 2006
  • KAERI(Korea Atomic Energy Research Institute) has developed a repassivation rate test system which can be operated at $300^{\circ}C$. It consists of an autoclave, three electrodes for an electrochemical test and a diamond scratch tip. All the electrodes are electrically insulated from the autoclave by using high temperature fittings. Reproducible repassivation curves of alloy 600 at 300 C were obtained. Repassivation rate of alloy 600 at pH 13 was slower than that of pH 10. Stress corrosion cracking test was carried as a function of the pH at a high temperature. At pH 10, alloy 600 showed a severe stress corrosion cracking(SCC), whereas it did not show a SCC at pH 7. From the viewpoint of a relationship between the current density and the charge density, a big difference was observed in the two solutions; the slope of pH 13 was steeper than that of pH 10. So the stress corrosion susceptibility at pH 13 seems to be higher than that of pH 10. The system would be a good tool to evaluate the SCC susceptibility of alloy 600 at a high temperature.

High Efficient and Stable Dye-sensitized Solar Cells (DSSCs) with Low Melting Point Glass Frits

  • Kim, Jong-U;Kim, Dong-Seon;Kim, Hyeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • $TiO_2$ films were modified by adding a glass frit as a light scattering particle and applied to an anode electrode in dye-sensitized solar cells (DSSCs) to enhance the adhesion between $TiO_2$ and fluorine doped transparent oxide (FTO). Low melting point glass frits at contents of (3 to 7wt%) were added to the nano crystalline $TiO_2$ films. The light scattering properties, photovoltaic properties and microstructures of the photo electrodes were examined to determine the role of the low glass transition temperature ($T_g$) glass frit. Electrochemical impedance spectroscopy, Brunauer-Emmett-Teller method and scratch test were conducted to support the results. The DSSC with the $TiO_2$ film containing 3wt% low Tg glass frit showed optimal performance (5.1%, energy conversion efficiency) compared to the $TiO_2$-based one. The photocurrent density slightly decreased by adding 3wt% of the frit due to its large size and non conductivity. However, the decrease of current density followed by the decrease of electron transfer due to the large frit in $TiO_2$ electrode was compensated by the scattering effect, high surface area and reduced the electron transfer impedance at the electrolyte-dye-$TiO_2$ interface. The stability of the photo electrodes was improved by the frit, which chemically promoted the sintering of $TiO_2$ at relatively low temperature ($450^{\circ}C$).

  • PDF

Effects of PbO on the Repassivation Kinetics of Alloy 690

  • Ahn, SeJin;Kwon, HyukSang;Lee, JaeHun;Park, YunWon;Kim, UhChul
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.131-139
    • /
    • 2004
  • Effects of PbO on the repassivation kinetics and characteristics of passive film of Alloy 690 were examined to elucidate the influences of PbO on the SCC resistance of that alloy. The repassivation kinetics of the alloy was analyzed in terms of the current density flowing from the scratch, i(t), as a function of the charge density that has flowed from the scratch, q(t). Repassivation on the scratched surface of the alloy occurred in two kinetically different processes; passive film initially nucleated and grew according to the place exchange model in which log i(t) is linearly proportional to q(t), and then grew according to the high field ion conduction model in which log i(t) is linearly proportional to 1/q(t) with a slope of cBV. The cBV is found to be a parameter representing repassivation rate and hence SCC susceptibility of the alloy. The lower the value of cBV, the faster the repassivation rate and the higher the SCC resistance of an alloy. Addition of PbO to pH 4 and 10 solutions increased the value of cBV of alloy 690, reflecting slower repassivation rate than without PbO. The change in the value of cBV was grater in pH 10 than in pH 4. The increase in SCC susceptibility of alloy 690 with the addition of PbO to solution was presumably due to the Cr-depletion in the outer parts of passive film of the alloy with an incorporation of Pb compounds in the film, which was revealed by Mott-Schottky, AES and XPS analyses.

Investigated properties of Low temperature curing Ag Paste for Silicon Hetero-junction Solar Cell

  • Oh, Donghyun;Jeon, Minhan;Kang, Jiwoon;Shim, Gyeongbae;Park, Cheolmin;Lee, Youngseok;Kim, Hyunhoo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.160-160
    • /
    • 2016
  • In this study, we applied the low temperature curing Ag paste to replace PVD System. The electrode formation of low temperature curing Ag paste for silicon Hetero-junction solar cells is important for improving device characteristics such as adhesion, contact resistance, fill factor and conversion efficiency. The low temperature curing Ag paste is composed various additives such as solvent, various organic materials, polymer, and binder. it depends on the curing temperature conditions. The adhesion of the low temperature curing Ag paste was decided by scratch test. The specific contact resistance was measured using the transmission line method. All of the Ag electrodes were experimented at various curing temperatures within the temperature range of $160^{\circ}C-240^{\circ}C$, at $20^{\circ}C$ intervals. The curing time was also changed by varying the conditions of 10-50min. In the optimum curing temperature $200^{\circ}C$ and for 20 min, the measured contact resistance is $19.61m{\Omega}cm^2$. Over temperature $240^{\circ}C$, confirmed bad contact characteristic. We obtained photovoltaic parameter of the industrial size such as Fill Factor (FF), current density (Jsc), open-circuit voltage (Voc) and convert efficiency of up to 76.2%, 38.1 mA/cm2, 646 mV and 18.3%, respectively.

  • PDF

Formation of Metal Electrode on Si3N4 Substrate by Electrochemical Technique (전기화학 공정을 이용한 질화규소 기판 상의 금속 전극 형성에 관한 연구)

  • Shin, Sung-Chul;Kim, Ji-Won;Kwon, Se-Hun;Lim, Jae-Hong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.530-538
    • /
    • 2016
  • There is a close relationship between the performance and the heat generation of the electronic device. Heat generation causes a significant degradation of the durability and/or efficiency of the device. It is necessary to have an effective method to release the generated heat. Based on demands of the printed circuit board (PCB) manufacturing, it is necessary to develop a robust and reliable plating technique for substrates with high thermal conductivity, such as alumina ($Al_2O_3$), aluminium nitride (AlN), and silicon nitride ($Si_3N_4$). In this study, the plating of metal layers on an insulating silicon nitride ($Si_3N_4$) ceramic substrate was developed. We formed a Pd-$TiO_2$ adhesion layer and used APTES(3-Aminopropyltriethoxysilane) to form OH groups on the surface and adhere the metal layer on the insulating $Si_3N_4$ substrate. We used an electroless Ni plating without sensitization/activation process, as Pd particles were nucleated on the $TiO_2$ layer. The electrical resistivity of Ni and Cu layers is $7.27{\times}10^{-5}$ and $1.32{\times}10^{-6}ohm-cm$ by 4 point prober, respectively. The adhesion strength is 2.506 N by scratch test.