• Title/Summary/Keyword: Scramjet Combustor

Search Result 77, Processing Time 0.039 seconds

NUMERICAL STUDY OF MIXING ENHANCEMENT EFFECT DUE TO THE CONFIGURATION RATIO OF CAVITY (Cavity 형상비에 따른 혼합 중대 효과의 수치적 연구)

  • Oh Juyoung;Bae Y.W.;Kim K.S.;Byun Y.H.;Lee J.-W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.245-248
    • /
    • 2005
  • SCRamjet is the key technology for hypersonic flight over mach number 6. It is characterized by very short residence time in combustor because its internal flow is supersonic. In this short time, the whole process of combustion must be done. Especially numerical study of combustor is important because air-fuel mixing rate influences the performance of combustor. Various methods of air-fuel mixing enhancement are proposed. Among these, cavity injection method is selected to study in this paper. The numerical study is conducted with the variation of the cavity length at the fixed height of unit and jet injection on the downstream of cavity.

  • PDF

Scramjet Engine Researches of the Korea Aerospace Research Institute (한국항공우주연구원의 스크램제트 엔진 연구 동향)

  • Lee, Yang Ji;Kang, Sang Hun;Yang, In Young;Lee, Kyung Jae;Yang, Soo Seok;Cha, Bong Jun
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.297-299
    • /
    • 2012
  • Korea Aerospace Research Institute has been doing researches on the hypersonic propulsion system and hypersonic wind-tunnel since 2000 and started scramjet engine researches from 2005. Total 5 kinds of scramjet engine were designed and tested and two of them were hydrocarbon-fueled scramjet engine. For verifying the own characteristics of each components like the intake and combustor, several component tests were done at the KSPC of JAXA and KARI. In this paper, current scramjet engine research activities of KARI will be described.

  • PDF

Numerical Analysis of Turbulent Combustion Flow in HyShot Scramjet Combustor (HyShot 스크램제트 연소기내의 난류 연소 유동해석)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.303-308
    • /
    • 2006
  • This paper describes numerical efforts to investigate combustion characteristics of HyShot scramjet engine. The corresponding altitude, angle of attack, and equivalence ratio are 28 km, $0^{\circ}$, and 0.426 respectively. $H_2$ and OH mass fraction show that the upstream recirculation zone of injector has flame-holding effects and main combustion begins at 15 cm downstream from cowl. Two-dimensional simulation reasonably predicts combustor inner pressure and also reveals periodic combustion characteristics of HyShot scramjet engine.

  • PDF

Model Scramjet Engine Design for Ground Test (지상시험용 모델 스크램제트 엔진의 설계)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.1-13
    • /
    • 2007
  • Scramjet engine is one of the most promising propulsion systems for future transport. For the ground test with T4 shock tunnel, model scramjet engine is designed. Design flight Mach number is 7.6 and flight altitude is 30km. Engine intake is designed by Levenberg-Marquardt optimization method and Korkegi relation. Furthermore, cowl cut out region is installed by the rule of Kantrowitz limit. Inside the combustor, cavity type flame holder is installed. Cavity is designed by Rayleigh line relation and PSR model. Numerical analysis is performed for the design confirm.

Characteristics on Combustion Mode in Dual Mode Scramjet Engine (이중모드 스크램제트 엔진의 연소모드 특성)

  • Namkoung, HyuckJoon;Shim, ChangYeul;Kim, SunYong;Lee, MinSoo;Park, JooHyon;Kim, DongHwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.330-335
    • /
    • 2017
  • Recently many studies have been made for the development of propulsion system with wide range flight from supersonic to hypersonic. Dual Mode scramjet engine as a hybrid cycle with advantage of ramjet and scramjet has one combustor. It works under the ramjet mode (subsonic combustion) and scramjet mode (supersonic combustion) respectively. In this study, Experimental results of hot firing tests of dual scramjet engine designed on the condition of Mach 3.5~6 as a flight Mach number are discussed. The tests were carried out on a ground test bench under free stream condition of Mach 6 at 27.6km altitude. In the tests, the adopted design and technological solutions were verified and efficient operation of the dual mode ramjet engine with Kerosene combustion during 5 seconds was demonstrated.

  • PDF

Starting Transients in Dual-Mode Scramjet Engine (이중 모드 스트램제트 엔진의 시동 천이 과정)

  • Choi, Jeong-Yeol;Noh, Jin-Hyun;Byun, Jong-Ryul;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.981-984
    • /
    • 2011
  • A high-resolution numerical study is carried out to investigate the transient process of the combustion and the shock-train developments in an ethylene-fueled direct-connect dual-mode scramjet combustor. Following the fuel injection, air-throttling is applied at the expansion part of the combustor to provide mass addition to block the flow to subsonic speed. The ignition occurs several ms later when the fuel and air are mixed sufficiently. The pressure build up by the combustion leads to the shock train formation in the isolator section that advances to the exit of the intake nozzle. Then, the air-throttling is deactivated and the exhaust process begins and the situation before the air-throttling is restored. Present simulation shows the detailed processes in the dual-mode scramjet combustor for better understanding of the operation regimes and characteristics.

  • PDF

Numerical Study of Thermal Choking Process in a Model SCRamjet Combustor (모델 스크램제트 연소기 내의 열적 질식 과정 수치 연구)

  • Lee, B.R.;Moon, G.W.;Jeung, I.S.;Choi, J.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.83-91
    • /
    • 2000
  • A numerical study was carried out to investigate the 'unstart' process of thermally-choked combustion in model scramjet engines. The combustion mechanism of supersonic combustor will be compared with the experimental results obtained from the T3 free-piston shock tunnel at ANU (Australian National University) and the high enthalpy supersonic wind tunnel at UT (University of Tokyo). For the numerical simulation of supersonic combustion. multi-species Navier-Stokes equations were considered. and detailed chemistry reaction mechanism of $H_2$-Air were adopted. The governing equations were solved by Roe's FDS method and LU-SGS method with MUSCL scheme. In this study. it is found that the thermal choking process could result from excessive heat release due to combustion. In detail, sufficient heat release could be generated at local region of very high temperature increased by reflection of shock waves or vortex sheets. Accordingly the flow of downstream of the combustor fell to subsonic field propagated upstream along the combustor. Sometimes the subsonic flow field propagated into isolator could generate precombustion shock waves in the isolator.

  • PDF

Numerical Investigation of Dual Mode Ramjet Combustor Using Quasi 1-Dimensional Solver (근사 1차원 솔버를 이용한 이중모드 램제트 연소실 해석)

  • Yang, Jaehoon;Nam, Jaehyun;Kang, Sanghun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.909-917
    • /
    • 2021
  • In this work, a one-dimensional combustor solver was constructed for the scramjet control m odel. The governing equations for fluid flow, Arrhenius based combustion kinetics, and the inje ction model were implemented into the solver. In order to validate the solver, the zero-dimensi onal ignition delay problem and one-dimensional scramjet combustion problem were considered and showed that the solver successfully reproduced the results from the literature. Subsequentl y, a ramjet analysis algorithm under subsonic speed conditions was constructed, and a study o n the inlet Mach number of the combustor was carried out through the thermal choking locatio ns at ram conditions. In such conditions, a model for precombustion shock train analysis was i mplemented, and the algorithm for transition section analysis was introduced. In addition, in or der to determine the appropriateness of the ram mode analysis in the code, the occurrence of a n unstart was studied through the length of the pseudo-shock in the isolator. A performance a nalysis study was carried out according to the geometry of the combustor.

Performance Load Balancing and Sensitivity Analysis of Ramjet/Scramjet for Dual-Combustion/Dual-Mode Ramjet Engine Part II. Performance Sensitivity (이중램제트(이중연소/이중모드)엔진을 위한 램제트/스크램제트의 작동영역분배 및 성능민감도분석 Part II. 성능민감도)

  • Kim, Sun-Kyoung;Jeon, Chang-Soo;Sung, Hong-Gye;Byen, Jong-Ryul;Yoon, Hyun-Gull
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.596-604
    • /
    • 2010
  • In order to investigate the operating conditions and major design parameters of a dual ramjet propulsion system, an theoretical analysis of ramjet and scramjet propulsion systems was performed. The performance characteristics of each engine are delivered by thermo-dynamical cycle analysis, considering loss effects in a real engine. The performance sensitivity analysis is conducted by investigating various performance parameters, such as an intake efficiency, combustor inlet Mach number, configuration of the combustor, fuel flow rate, and exhaust nozzle efficiency. Based on these analysis results, the processes of application to dual ramjet cycle engines are specified.

The Study of Mixing Characteristics for the cavity sizes in SCRamjet Combustor using PSP (PSP를 적용한 스크램제트 연소기 내부의 cavity 크기 변화에 따른 혼합특성에 관한 연구)

  • Jeong, Hui;Seo, Hyung-Seok;Choi, Won-Hyeok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.339-342
    • /
    • 2008
  • The PSP(Pressure Sensitive Paint) is a technique to measure continuous pressure distribution on medel surface by oxygen quenching. The objective of this study is to apply PSP which is measured pressure for analyzing that air-fuel mixing characteristics in SCRamjet combustor. Experimentation is performed at freestream Mach number of 2.5 and used fuel jet injection. The result shows that growing air-fuel mixed proportions by increasing in cavity size. Also, PSP results compared with conventional pressure tap and CFD. They are coincided with qualitative and the inclination.

  • PDF