• Title/Summary/Keyword: Scikit-learn

Search Result 21, Processing Time 0.027 seconds

Clasification of Cyber Attack Group using Scikit Learn and Cyber Treat Datasets (싸이킷런과 사이버위협 데이터셋을 이용한 사이버 공격 그룹의 분류)

  • Kim, Kyungshin;Lee, Hojun;Kim, Sunghee;Kim, Byungik;Na, Wonshik;Kim, Donguk;Lee, Jeongwhan
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.165-171
    • /
    • 2018
  • The most threatening attack that has become a hot topic of recent IT security is APT Attack.. So far, there is no way to respond to APT attacks except by using artificial intelligence techniques. Here, we have implemented a machine learning algorithm for analyzing cyber threat data using machine learning method, using a data set that collects cyber attack cases using Scikit Learn, a big data machine learning framework. The result showed an attack classification accuracy close to 70%. This result can be developed into the algorithm of the security control system in the future.

Course recommendation system using deep learning (딥러닝을 이용한 강좌 추천시스템)

  • Min-Ah Lim;Seung-Yeon Hwang;Dong-Jin Shin;Jae-Kon Oh;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.193-198
    • /
    • 2023
  • We study a learner-customized lecture recommendation project using deep learning. Recommendation systems can be easily found on the web and apps, and examples using this feature include recommending feature videos by clicking users and advertising items in areas of interest to users on SNS. In this study, the sentence similarity Word2Vec was mainly used to filter twice, and the course was recommended through the Surprise library. With this system, it provides users with the desired classification of course data conveniently and conveniently. Surprise Library is a Python scikit-learn-based library that is conveniently used in recommendation systems. By analyzing the data, the system is implemented at a high speed, and deeper learning is used to implement more precise results through course steps. When a user enters a keyword of interest, similarity between the keyword and the course title is executed, and similarity with the extracted video data and voice text is executed, and the highest ranking video data is recommended through the Surprise Library.

Performance Comparison Analysis of AI Supervised Learning Methods of Tensorflow and Scikit-Learn in the Writing Digit Data (필기숫자 데이터에 대한 텐서플로우와 사이킷런의 인공지능 지도학습 방식의 성능비교 분석)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.701-706
    • /
    • 2019
  • The advent of the AI(: Artificial Intelligence) has applied to many industrial and general applications have havingact on our lives these days. Various types of machine learning methods are supported in this field. The supervised learning method of the machine learning has features and targets as an input in the learning process. There are many supervised learning methods as well and their performance varies depends on the characteristics and states of the big data type as an input data. Therefore, in this paper, in order to compare the performance of the various supervised learning method with a specific big data set, the supervised learning methods supported in the Tensorflow and the Sckit-Learn are simulated and analyzed in the Jupyter Notebook environment with python.

Alarm program through image processing based on Machine Learning (ML 기반의 영상처리를 통한 알람 프로그램)

  • Kim, Deok-Min;Chung, Hyun-Woo;Park, Goo-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.304-307
    • /
    • 2021
  • ML(machine learning) 기술을 활용하여 실용적인 측면에서 일반 사용자들이 바라보고 사용할 수 있도록 다양한 연구 개발이 이루어지고 있다. 특히 최근 개인 사용자의 personal computer와 mobile device의 processing unit의 연산 처리 속도가 두드러지게 빨라지고 있어 ML이 더 생활에 밀접해지고 있는 추세라고 볼 수 있다. 현재 ML시장에서 다양한 솔루션 및 어플리케이션을 제공하는 툴이나 라이브러리가 대거 공개되고 있는데 그 중에서도 Google에서 개발하여 배포한 'Mediapipe'를 사용하였다. Mediapipe는 현재 'android', 'IOS', 'C++', 'Python', 'JS', 'Coral' 등의 환경에서 개발을 지원하고 있으며 더욱 다양한 환경을 지원할 예정이다. 이에 본 팀은 앞서 설명한 Mediapipe 프레임워크를 기반으로 Machine Learning을 사용한 image processing를 통해 일반 사용자들에게 편의성을 제공할 수 있는 알람 프로그램을 연구 및 개발하였다. Mediapipe에서 신체를 landmark로 검출하게 되는데 이를 scikit-learn 머신러닝 라이브러리를 사용하여 특정 자세를 학습시키고 모델화하여 알람 프로그램에 특정 기능에 조건으로 사용될 수 있게 하였다. scikit-learn은 아나콘다 등과 같은 개발환경 패키지에서 간단하게 이용 가능한데 이 아나콘다는 데이터 분석이나 그래프 그리기 등, 파이썬에 자주 사용되는 라이브러리를 포함한 개발환경이라고 할 수 있다. 하여 본 팀은 ML기반의 영상처리 알람 프로그램을 제작하는데에 있어 이러한 사항들을 파이썬 환경에서 기본적으로 포함되어 제공하는 tkinter GUI툴을 사용하고 추가적으로 인텔에서 개발한 실시간 컴퓨터 비전을 목적으로 한 프로그래밍 라이브러리 OpenCV와 여러 항목을 사용하여 환경을 구축할 수 있도록 연구·개발하였다.

  • PDF

A Study on Applicability of Machine Learning for Book Classification of Public Libraries: Focusing on Social Science and Arts (공공도서관 도서 분류를 위한 머신러닝 적용 가능성 연구 - 사회과학과 예술분야를 중심으로 -)

  • Kwak, Chul Wan
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.32 no.1
    • /
    • pp.133-150
    • /
    • 2021
  • The purpose of this study is to identify the applicability of machine learning targeting titles in the classification of books in public libraries. Data analysis was performed using Python's scikit-learn library through the Jupiter notebook of the Anaconda platform. KoNLPy analyzer and Okt class were used for Hangul morpheme analysis. The units of analysis were 2,000 title fields and KDC classification class numbers (300 and 600) extracted from the KORMARC records of public libraries. As a result of analyzing the data using six machine learning models, it showed a possibility of applying machine learning to book classification. Among the models used, the neural network model has the highest accuracy of title classification. The study suggested the need for improving the accuracy of title classification, the need for research on book titles, tokenization of titles, and stop words.

Accuracy of Phishing Websites Detection Algorithms by Using Three Ranking Techniques

  • Mohammed, Badiea Abdulkarem;Al-Mekhlafi, Zeyad Ghaleb
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.272-282
    • /
    • 2022
  • Between 2014 and 2019, the US lost more than 2.1 billion USD to phishing attacks, according to the FBI's Internet Crime Complaint Center, and COVID-19 scam complaints totaled more than 1,200. Phishing attacks reflect these awful effects. Phishing websites (PWs) detection appear in the literature. Previous methods included maintaining a centralized blacklist that is manually updated, but newly created pseudonyms cannot be detected. Several recent studies utilized supervised machine learning (SML) algorithms and schemes to manipulate the PWs detection problem. URL extraction-based algorithms and schemes. These studies demonstrate that some classification algorithms are more effective on different data sets. However, for the phishing site detection problem, no widely known classifier has been developed. This study is aimed at identifying the features and schemes of SML that work best in the face of PWs across all publicly available phishing data sets. The Scikit Learn library has eight widely used classification algorithms configured for assessment on the public phishing datasets. Eight was tested. Later, classification algorithms were used to measure accuracy on three different datasets for statistically significant differences, along with the Welch t-test. Assemblies and neural networks outclass classical algorithms in this study. On three publicly accessible phishing datasets, eight traditional SML algorithms were evaluated, and the results were calculated in terms of classification accuracy and classifier ranking as shown in tables 4 and 8. Eventually, on severely unbalanced datasets, classifiers that obtained higher than 99.0 percent classification accuracy. Finally, the results show that this could also be adapted and outperforms conventional techniques with good precision.

Heart Disease Prediction Using Decision Tree With Kaggle Dataset

  • Noh, Young-Dan;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.21-28
    • /
    • 2022
  • All health problems that occur in the circulatory system are refer to cardiovascular illness, such as heart and vascular diseases. Deaths from cardiovascular disorders are recorded one third of in total deaths in 2019 worldwide, and the number of deaths continues to rise. Therefore, if it is possible to predict diseases that has high mortality rate with patient's data and AI system, they would enable them to be detected and be treated in advance. In this study, models are produced to predict heart disease, which is one of the cardiovascular diseases, and compare the performance of models with Accuracy, Precision, and Recall, with description of the way of improving the performance of the Decision Tree(Decision Tree, KNN (K-Nearest Neighbor), SVM (Support Vector Machine), and DNN (Deep Neural Network) are used in this study.). Experiments were conducted using scikit-learn, Keras, and TensorFlow libraries using Python as Jupyter Notebook in macOS Big Sur. As a result of comparing the performance of the models, the Decision Tree demonstrates the highest performance, thus, it is recommended to use the Decision Tree in this study.

Prediction of East Asian Brain Age using Machine Learning Algorithms Trained With Community-based Healthy Brain MRI

  • Chanda Simfukwe;Young Chul Youn
    • Dementia and Neurocognitive Disorders
    • /
    • v.21 no.4
    • /
    • pp.138-146
    • /
    • 2022
  • Background and Purpose: Magnetic resonance imaging (MRI) helps with brain development analysis and disease diagnosis. Brain volumes measured from different ages using MRI provides useful information in clinical evaluation and research. Therefore, we trained machine learning models that predict the brain age gap of healthy subjects in the East Asian population using T1 brain MRI volume images. Methods: In total, 154 T1-weighted MRIs of healthy subjects (55-83 years of age) were collected from an East Asian community. The information of age, gender, and education level was collected for each participant. The MRIs of the participants were preprocessed using FreeSurfer(https://surfer.nmr.mgh.harvard.edu/) to collect the brain volume data. We trained the models using different supervised machine learning regression algorithms from the scikit-learn (https://scikit-learn.org/) library. Results: The trained models comprised 19 features that had been reduced from 55 brain volume labels. The algorithm BayesianRidge (BR) achieved a mean absolute error (MAE) and r squared (R2) of 3 and 0.3 years, respectively, in predicting the age of the new subjects compared to other regression methods. The results of feature importance analysis showed that the right pallidum, white matter hypointensities on T1-MRI scans, and left hippocampus comprise some of the essential features in predicting brain age. Conclusions: The MAE and R2 accuracies of the BR model predicting brain age gap in the East Asian population showed that the model could reduce the dimensionality of neuroimaging data to provide a meaningful biomarker for individual brain aging.

Prediction of Transition Temperature and Magnetocaloric Effects in Bulk Metallic Glasses with Ensemble Models (앙상블 기계학습 모델을 이용한 비정질 소재의 자기냉각 효과 및 전이온도 예측)

  • Chunghee Nam
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.363-369
    • /
    • 2024
  • In this study, the magnetocaloric effect and transition temperature of bulk metallic glass, an amorphous material, were predicted through machine learning based on the composition features. From the Python module 'Matminer', 174 compositional features were obtained, and prediction performance was compared while reducing the composition features to prevent overfitting. After optimization using RandomForest, an ensemble model, changes in prediction performance were analyzed according to the number of compositional features. The R2 score was used as a performance metric in the regression prediction, and the best prediction performance was found using only 90 features predicting transition temperature, and 20 features predicting magnetocaloric effects. The most important feature when predicting magnetocaloric effects was the 'Fe' compositional ratio. The feature importance method provided by 'scikit-learn' was applied to sort compositional features. The feature importance method was found to be appropriate by comparing the prediction performance of the Fe-contained dataset with the full dataset.

Pig Image Learning for Improving Weight Measurement Accuracy

  • Jonghee Lee;Seonwoo Park;Gipou Nam;Jinwook Jang;Sungho Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.33-40
    • /
    • 2024
  • The live weight of livestock is important information for managing their health and housing conditions, and it can be used to determine the optimal amount of feed and the timing of shipment. In general, it takes a lot of human resources and time to weigh livestock using a scale, and it is not easy to measure each stage of growth, which prevents effective breeding methods such as feeding amount control from being applied. In this paper, we aims to improve the accuracy of weight measurement of piglets, weaned pigs, nursery pigs, and fattening pigs by collecting, analyzing, learning, and predicting video and image data in animal husbandry and pig farming. For this purpose, we trained using Pytorch, YOLO(you only look once) 5 model, and Scikit Learn library and found that the actual and prediction graphs showed a similar flow with a of RMSE(root mean square error) 0.4%. and MAPE(mean absolute percentage error) 0.2%. It can be utilized in the mammalian pig, weaning pig, nursery pig, and fattening pig sections. The accuracy is expected to be continuously improved based on variously trained image and video data and actual measured weight data. It is expected that efficient breeding management will be possible by predicting the production of pigs by part through video reading in the future.