• Title/Summary/Keyword: Scientific argumentation

Search Result 79, Processing Time 0.027 seconds

Analyzing Science Teachers' Understandings about Scientific Argumentation in terms of Scientific Inquiry

  • Park, Young-Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.3
    • /
    • pp.211-226
    • /
    • 2008
  • The purpose of this study was to investigate science teachers' understandings about scientific argumentation in the classroom. Seven structured interview protocols were developed, asking the definition of scientific inquiry, the differentiation between scientific inquiry and hands-on activity, the opportunity of student argumentation, explicit teaching strategies for scientific argumentation, the critical example of argumentation, the criteria of successful argumentation, and the barrier of developing argumentation. The results indicate that there are differences and similarities in understandings about scientific argumentation between two groups of middle school teachers and upper elementary. Basically, teachers at middle school define scientific inquiry as the opportunity of practicing reasoning skills through argumentation, while teachers at upper elementary define it as the more opportunities of practicing procedural skills through experiments rather than of developing argumentation. Teachers in both groups have implemented a teaching strategy called "Claim-Evidence Approach," for the purpose of providing students with more opportunities to develop arguments. Students' misconception, limited scientific knowledge and perception about inquiry as a cycle without the opportunity of using reasoning skills were considered as barriers for implementing authentic scientific inquiry in the classroom.

The Influence of Argumentation on the Scientific Writing of Elementary School Students (논의활동이 초등학생의 과학글쓰기에 미치는 영향)

  • Kang, Myo-Jeong;Kong, Young-Tae
    • Journal of Science Education
    • /
    • v.38 no.2
    • /
    • pp.286-301
    • /
    • 2014
  • The purpose of this study is to examine the influence of argumentation for elementary students' scientific writing. Using nine subjects that were comprised of scientific situations and social scientific situations, this study was applied to four 5th grade students utilizing argumentation and scientific writing. The students' scientific writing and argumentation were collected and analyzed based on three domains of scientific writing: scientific thinking, logic, and creativity. The results from this study are as follows. First, the various contents of argumentation positively affected all of the scientific writing domains in post-argumentation scientific writing. Second, the contents of argumentation appeared in the post-argumentation scientific writing as three different forms: 1) Each individual's scientific concepts, claims, and ideas, which were newly mentioned in the process of argumentation, were expressed, 2) Their classmates' claims, grounds and ideas, which were discussed in the process of argumentation, were expressed through internalization, and 3) Expanded ideas, new claims and inferences based on the argumentation were expressed.

  • PDF

Students Opportunities to Develop Scientific Argumentation in the Context of Scientific Inquiry: A Review of Literature

  • Flick, Larry;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.25 no.3
    • /
    • pp.194-204
    • /
    • 2004
  • The purpose of this literature review is to investigate what kinds of research have been done about scientific inquiry in terms of scientific argumentation in the classroom context from the upper elementary to the high school levels. First, science educators argued that there had not been differentiation between authentic scientific inquiry by scientists and school scientific inquiry by students in the classroom. This uncertainty of goals or definition of scientific inquiry has led to the problem or limitation of implementing scientific inquiry in the classroom. It was also pointed out that students' learning science as inquiry has been done without opportunities of argumentation to understand how scientific knowledge is constructed. Second, what is scientific argumentation, then? Researchers stated that scientific inquiry in the classroom cannot be guaranteed only through hands-on experimentation. Students can understand how scientific knowledge is constructed through their reasoning skills using opportunities of argumentation based on their procedural skills using opportunities of experimentation. Third, many researchers emphasized the social practices of small or whole group work for enhancing students' scientific reasoning skills through argumentations. Different role of leadership in groups and existence of teachers' roles are found to have potential in enhancing students' scientific reasoning skills to understand science as inquiry. Fourth, what is scientific reasoning? Scientific reasoning is defined as an ability to differentiate evidence or data from theory and coordinate them to construct their scientific knowledge based on their collection of data (Kuhn, 1989, 1992; Dunbar & Klahr, 1988, 1989; Reif & Larkin, 1991). Those researchers found that students skills in scientific reasoning are different from scientists. Fifth, for the purpose of enhancing students' scientific reasoning skills to understand how scientific knowledge is constructed, other researchers suggested that teachers' roles in scaffolding could help students develop those skills. Based on this literature review, it is important to find what kinds of generalizable teaching strategies teachers use for students scientific reasoning skills through scientific argumentation and investigate teachers' knowledge of scientific argumentation in the context of scientific inquiry. The relationship between teachers' knowledge and their teaching strategies and between teachers teaching strategies and students scientific reasoning skills can be found out if there is any.

Suggestion of the Scientific Argumentation PCK Developmental Model for Preservice Earth Science Teachers through an Instructional Design Program Using Argumentation Structures (논증구조 수업설계 프로그램을 통한 예비 지구과학 교사의 과학논증 PCK 발달 모델 제안)

  • Park, Won-Mi;Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.76-90
    • /
    • 2022
  • In this study, after applying the argument structure class design program for 20 preservice earth science teachers, we conducted individual in-depth interviews, analyzed the data, and derived a scientific argumentation PCK development model. The scientific argumentation PCK development model consists of three dimensions: Scientific argumentation PCK, PCK ecosystem, and reflective practice. Scientific argumentation PCK is demonstrated in the process of designing or executing classes using argumentation structures as an instructional reasoning tool. PCK ecosystem, consisting of the existing conventional PCK components, is a dimension surrounding the scientific argumentation PCK, and these two dimensions develop by interacting with each other. Reflective practice regulates each dimension and develops it in various ways by mediating the two dimensions of the scientific argumentation PCK and the PCK ecosystem. The conclusions drawn based on the results are as follows: First, preservice science teachers can demonstrate scientific argumentation PCK in the process of design and implementation of lessons using argumentation structures as a pedagogical reasoning tool. Second, it is necessary to develop the PCK for pedagogical reasoning tools such as scientific argumentation PCK in advance for the development of science teachers' PCK, since the scientific argumentation PCK can develop various components of the PCK ecosystem. Finally, it is necessary to use scientific argumentation PCK to support the preservice teacher's reflective practice, seeing that the scientific argumentation PCK promotes the development of PCK ecosystem components by inducing reflective practice.

Claim-Evidence Approach for the Opportunity of Scientific Argumentation

  • Park, Young-Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.5
    • /
    • pp.620-636
    • /
    • 2006
  • The purpose of this study was to analyze one science teacher's understanding of student argumentation and his explicit teaching strategies for implementing it in the classroom. One middle school science teacher, Mr. Field, and his students of 54 participated in this study. Data were collected through three semi-structured interviews, 60 hours of classroom observations, and two times of students' lab reports for eight weeks. Coding categories were developed describing the teacher's understanding of scientific argumentation and a description of the main teaching strategy, the Claim-Evidence Approach, was introduced. Toulmin's approach was employed to analyze student discourse as responses to see how much of this discourse was argumentative. The results indicated that Mr. Field defined scientific inquiry as the abilities of procedural skills through experimentation and of reasoning skills through argumentation. The Claim-Evidence Approach provided students with opportunities to develop their own claims based on their readings, design the investigation for evidence, and differentiate pieces of evidence from data to support their claims and refute others. During this approach, the teacher's role of scaffolding was critical to shift students' less extensive argumentation to more extensive argumentation through his prompts and questions. The different level of teacher's involvement, his explicit teaching strategy, and the students' scientific knowledge influenced the students' ability to develop and improve argumentation.

Automated Scoring of Argumentation Levels and Analysis of Argumentation Patterns Using Machine Learning (기계 학습을 활용한 논증 수준 자동 채점 및 논증 패턴 분석)

  • Lee, Manhyoung;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.3
    • /
    • pp.203-220
    • /
    • 2021
  • We explored the performance improvement method of automated scoring for scientific argumentation. We analyzed the pattern of argumentation using automated scoring models. For this purpose, we assessed the level of argumentation for student's scientific discourses in classrooms. The dataset consists of four units of argumentation features and argumentation levels for episodes. We utilized argumentation clusters and n-gram to enhance automated scoring accuracy. We used the three supervised learning algorithms resulting in 33 automatic scoring models. As a result of automated scoring, we got a good scoring accuracy of 77.59% on average and up to 85.37%. In this process, we found that argumentation cluster patterns could enhance automated scoring performance accuracy. Then, we analyzed argumentation patterns using the model of decision tree and random forest. Our results were consistent with the previous research in which justification in coordination with claim and evidence determines scientific argumentation quality. Our research method suggests a novel approach for analyzing the quality of scientific argumentation in classrooms.

A Study on the Characteristics of the Component of Argumentation in the Process of Solving Scientific Argument Tasks among Elementary Students (과학적 맥락의 논의 과제 해결 과정에서 나타나는 초등학생들의 논의 과정 요소의 특성에 관한 연구)

  • Lee, Seok-Hee;Seo, Bong-Hee;Kim, Yong-Gwon
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.1
    • /
    • pp.76-86
    • /
    • 2007
  • The purpose of this study is to investigate the characteristics of scientific argumentation and its development in the process of mutual discussion activities by elementary school students in the 5th grade. The results of this study can be summarized as below: First, students used diversity argumentation components for solving the given argumentation theme, however, most students used the assertion or the basis of a simple expression of their own thoughts as a high ratio, and components of a one directional explanatory argumentation process rather than components of a mutual communicative argumentation process. Second, an asymmetric group showed a high-use ratio of communicative argumentation components and achieved argumentation activities harmoniously between a symmetric group and an asymmetric group in organization of groups for solving argumentation themes. It was found that students in the transitional period showed the highest rate of participation within the discussion process. Moreover, they also showed the highest rate of development of discussion skills whilst in the process of using scientific problems. In conclusion, this phenomenon is caused by highlighting the mutual action between the teacher and the student rather than placing an emphasis on the mutual action among students during field instructions.

  • PDF

Investigation of Scientific Argumentation in the Classes for Elementary Gifted Students (초등 단위 학교 영재 수업에서 나타나는 과학적 논증 과정에 대한 탐색)

  • Lim, Hyeon-Ju;Shin, Young-Joon
    • Journal of Korean Elementary Science Education
    • /
    • v.31 no.4
    • /
    • pp.513-531
    • /
    • 2012
  • This study was to analyze the characteristic of scientific argumentation in the classes for the gifted of elementary school. The participants of this study were 5 fifth graders and 9 sixth graders, 14 in total, from the basic unit schools for gifted students of J elementary school in Incheon city. And it constituted small scale groups made up of 2~3 students with similar or identical ability in scientific reasoning. It had set up hypothesis for each group before the experiment, and students had a group discussion as a whole after the experiment. Classes were conducted 4 times, all courses were recorded as a sound/video. The ability in scientific reasoning of the students was inspected, making use of SRT II by means of pre-survey, and their argumentation levels were analyzed, utilizing 'Rubric for scientific argumentation course assessment.' As a result, argumentations did not incurred in every class. Analysis in argumentations of the students resulted in low level argumentation. This means argumentation cannot incur based on that with the limit in understanding the principle of experiments over the threshold of textbook no matter that he is an gifted student or not. The student both in formal operational period and transition period (2B/3A), the ability of scientific thinking in upper level, was improved of his argumentative ability in an overall aspect. However, a student of concrete operational period, the ability of scientific thinking in lower level, had argumentation with still lower level even after the experiment at the moment of discussing with the students on the upper level of scientific thinking ability.

Development of Scientific Conceptual Understanding through Process-Centered Assessment that Visualizes the Process of Scientific Argumentation (과학적 논의 과정을 시각화한 과정중심평가에서의 과학적 개념 이해 발달)

  • Kim, Misook;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.5
    • /
    • pp.637-654
    • /
    • 2019
  • The purpose of this study is to investigate the development of scientific conceptual understanding through a process-centered assessment that visualizes the process of scientific argumentation. In this study, 353 high school students and five teachers participated in the scientific argumentation. As a result of analyzing students' utterances on the elements of argumentation, scientific concepts in intragroup were embodied through query and clarification of meaning, and organized through agreement and rebuttal. In intergroup argumentation, scientific concepts were elaborated through query, clarification of meaning, and change of claim. Teachers were able to understand the process of argumentation through small-group activity sheets where the process was visualized, thereby providing feedback and improving the class. Based on the results, the scientific argumentation of visualizing the process was found not only to allow students to perform self-assessment and peer-assessment but also to help teachers understand the argumentation process. The findings of this study guide process-centered assessment in the science curriculum and are expected to contribute to the promotion of scientific argumentation in classrooms.

The Exploration of Open Scientific Inquiry Model Emphasizing Students' Argumentation (학생의 논변활동을 강조한 개방적 과학탐구활동 모형의 탐색)

  • Kim, Hee-Kyong;Song, Jin-Woong
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.6
    • /
    • pp.1216-1234
    • /
    • 2004
  • School science practical work is often criticized as lacking key elements of authentic science, such as peer argumentation or debate through which social consensus is obtained. The purpose of this paper is to review the recent studies about the argumentation and to explore the conditions and the model of argumentative scientific inquiry, which is specially designed open inquiry in order to facilitate students' peer argumentation. For this purpose, a theoretical discussion for the argumentative scientific inquiry as the way of authentic inquiry in schools was developed. The conditions for argumentative scientific inquiry were found to be the following: multiple arguments, students' own claims, opportunities for oral and written argumentation, equal status of debaters, and community of cooperative competition. For these conditions, the argumentative scientific inquiry was organized into experiment activities and argumentation activities. During argumentation activity, students should be guided to advance written argumentation through writing a group report for peer review and oral argumentation through a critical discussion. Through the argumentation between groups and in group, the students' arguments would be elaborated repeatedly. The feedback from argumentation links experiment activities to argumentation activities. Hence, the whole process of this inquiry model is circular.