The Exploration of Open Scientific Inquiry Model Emphasizing Students' Argumentation

학생의 논변활동을 강조한 개방적 과학탐구활동 모형의 탐색

  • Published : 2004.12.30

Abstract

School science practical work is often criticized as lacking key elements of authentic science, such as peer argumentation or debate through which social consensus is obtained. The purpose of this paper is to review the recent studies about the argumentation and to explore the conditions and the model of argumentative scientific inquiry, which is specially designed open inquiry in order to facilitate students' peer argumentation. For this purpose, a theoretical discussion for the argumentative scientific inquiry as the way of authentic inquiry in schools was developed. The conditions for argumentative scientific inquiry were found to be the following: multiple arguments, students' own claims, opportunities for oral and written argumentation, equal status of debaters, and community of cooperative competition. For these conditions, the argumentative scientific inquiry was organized into experiment activities and argumentation activities. During argumentation activity, students should be guided to advance written argumentation through writing a group report for peer review and oral argumentation through a critical discussion. Through the argumentation between groups and in group, the students' arguments would be elaborated repeatedly. The feedback from argumentation links experiment activities to argumentation activities. Hence, the whole process of this inquiry model is circular.

전통적인 학교 과학 실험은 실제 과학 활동, 즉 참과학 탐구의 특징을 적절히 반영하고 있지 못하며, 특히 토론이나 논변적 실제가 부족하다는 비판이 제기되고 있다. 이에, 본 논문의 목적은 학생들의 동료간 논변활동을 강조한 개방적 탐구 활동을 제안하기 위해, 그 조건 및 특징을 알아보고 적절한 모형을 제안하는 것이다. 문헌 분석 및 이론적 논의를 바탕으로, 학생들의 논변활동을 촉진시키기 위해서 논변적 과학탐구 활동이 가져야 할 조건에 대하여 살펴 본 결과, 인지적 측면에서는 '다양한 견해가 가능한 문제 상황', '학생 자신의 주장 펼치기', '효과적으로 조직된 논변 구성의 기회'가 필요하며, 사회적 측면에서는 '수펑적 관계', '경쟁과 협력의 공동체 활동'이 필요한 것으로 분석되었다. 이러한 조건을 만족시키기 위해 논변적 과학 탐구 활동은 실험활동과 논변활동으로 구성되며 논변활동은 동료 검토용 보고서 쓰기와 비판적 토론으로 조직되었다. 논변활동은 조 내부와 조 별간에, 그리고 쓰기와 토론을 통해서 반복적으로 이루어지며 되먹임을 통해 실험활동과 연계되어 있으며 전체 탐구 과정은 순환적인 특징을 갖는다.

Keywords

References

  1. 강태완, 김태용, 이상철, 허경호(2001). 토론의 방법. 서울:커뮤니케이션북스
  2. 김희경, 강태욱, 송진웅(2003). 7차 교육과정에 따른 중학교 과학 교과서 물리단원 실험의 특징. 새물리, 47(6), 387-394
  3. 민병곤(2000). 신문사설의 논증 구조 분석. 국어국문학, 127, 133-154
  4. 민병곤(2001), 논증 이론의 현황과 국어 교육의 과제. 국어교육학연구, 12(1), 237-285
  5. 연세대학교 언어정보개발연구원(2002). 연세 한국어사전. 서울: 두산동아
  6. 이범홍(1998). 토의토론 학습과 중등학교 과학교육. 1997년도 교과교육공동연구 결과 보고서(RR 97-II-6). 서울: 한국학술진흥재단
  7. 이선영(2002). 토론의 논증 구성과 사회적 상호작용에 관한 연구. 서울대학교 석사 학위 논문
  8. 한국물리교육연구센터(1994). 과학 공동탐구 토론대회 보고서. 서울: 관악사
  9. Alexopoulou, E. & Driver, R. (1996). Small group discussions in physics: peer interaction modes in pairs and fours. Journal of Research in Science Teaching, 33(10), 1099-1114 https://doi.org/10.1002/(SICI)1098-2736(199612)33:10<1099::AID-TEA4>3.0.CO;2-N
  10. Alexopoulou, E. & Driver, R. (1997). Gender differences in small group discussions in physics. International Journal of Science Education, 19(4), 393-406 https://doi.org/10.1080/0950069970190403
  11. Bell, P. & Linn. M. C. (2000). Scientific arguments as learning artifacts: designing for learning from the web with KIE, International Journal of Science Education, 22(8), 797-817 https://doi.org/10.1080/095006900412284
  12. Berry, A., Mulhall, P., Loughran, J. J., & Gunstone, R. F. (1999). Helping students learn from laboratory work. Australian Science Teachers' Journal, 45(1), 27-31
  13. Boulter, C. J. & Gilbert, J. K. (1995). Argument and science education. In P. S. M. Costello & S. Mitchell (Eds.), Competing and consensual voices: The theory and practice of argumentation. Clevedon, UK: Multilingual Matters
  14. Chinn, C. A. & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1-49 https://doi.org/10.3102/00346543063001001
  15. Chinn, C. A. & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623-654 https://doi.org/10.1002/(SICI)1098-2736(199808)35:6<623::AID-TEA3>3.0.CO;2-O
  16. Chinn, C. A. & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218 https://doi.org/10.1002/sce.10001
  17. Collette, A. T. & Chiappetta, E. L. (1989). Science instruction in the middle and secondary schools. Columbus, OH: Merrill Pub. Co
  18. Cunningham, C. M. & Helms, J. V. (1998). Sociology of science as a means to a more authentic, inclusive Science Education. Journal of Research in Science Teaching, 35(5), 483-499 https://doi.org/10.1002/(SICI)1098-2736(199805)35:5<483::AID-TEA2>3.0.CO;2-L
  19. Deci, E. L. (1975). Intrinsic motivation. New York, NY: Plenum
  20. Dillon, J. T. (1994). Using discussion in classroom. Buckingham, UK: Open University Press
  21. Driver, R. (1983). The Pupil as Scientist? Milton Keynes: The Open University Press
  22. Driver, R. (1989). The Construction of Scientific Knowledge in School Classrooms. In R. Millar (Ed.), Doing Science: Images of Science in Science Education (pp. 83-105). NY: The Falmer Press
  23. Driver, R. & Scott, P. H. (1996). Curriculum Development as Research: A Constructivist Approach to Science Curriculum Development and Teaching. In D. F. Treagust, R. Duit, & B. J.Fraser (Eds.), Improving Teaching and Learning in Science and Mathematics (pp. 83-106). NY: Teachers College Press
  24. Driver, R., Newton, P., & Osborn, J. (2000). Establishing the Norms of Scientific Argumentation in Classrooms. Science Education, 84(3), 287-312 https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  25. Duggan, S. & Gott, R. (2002). What sort of science education do we really need? International Journal of Science Education, 24(7), 661-679 https://doi.org/10.1080/09500690110110133
  26. Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. J. Sternberg & J. E. Davidson (Eds.), Mechanisms of insight (pp. 365-395). Cambridge, MA: MIT Press
  27. Duschl, R. A., Ellenbogen, K., & Erduran, S. (1999, March). Promoting argumentation in middle school science students. Paper presented at the annual meeting of the National Association for Research in Science Teaching (NARST), Boston, MA
  28. Fuller, S. (1997). Science. Buckingham, UK: Open University Press
  29. Gott, R. & Duggan, S. (1995). Investigative work in the science cuniculum. Buckingham, UK: Open University Press
  30. Hackling, M. W. & Fairbrother, R. W. (1996). Helping students to do open investigation in science. Australian Science Teachers Journal, 42(4), 26-33
  31. Heisenberg, W. (1982). 부분과 전체 (김용준, 역). 서울: 지식산업사. (원저 1969 발행)
  32. Hodson, D. (1993). Rethinking old ways: towards a more critical approach to practical work in school science. Studies in Science Education, 22, 85-142 https://doi.org/10.1080/03057269308560022
  33. Hodson, D. (1998). Is this really what scientists do? Seeking a more authentic science in and beyond the school laboratory. In J. J. Wellington (Ed.), Practical Work in School Science (pp. 93-108). NY: Routledge
  34. Hodson, D. & Bencze, L. (1998). Becoming critical about pratical about practical work: changing views and changing practice through action research. International Journal of Science Education, 20(6), 683-694 https://doi.org/10.1080/0950069980200606
  35. Hofstein, A. & Lunetta, V. N. (2004). The laboratory in Science Education: Foundations for the twenty-first century. Science Education, 88(1), 28-54 https://doi.org/10.1002/sce.10106
  36. Inch, E. S. & Warnick, B. (2002). Critical thinking and communication: the use of reason in argument. Boston, MA: Allyn and Bacon
  37. Jimenez-Aleixandre, M. P., Bugallo-Rodriguez, A. & Duschl, R. (2000). 'Doing the lesson' or 'doing science': argument in high school genetics. Science Education, 84(6), 757-792 https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  38. Jimenez-Aleixandre, M. P., Agroso, M., & Birexas, F. (2004, April). Scientific Authority and Empirical Data in Argument Warrants about the Prestige Oil Spill. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Vancouver, Canada
  39. Johnson, R. H. (2000). Manifest rationality: a pragmatic theory of argument. Mahwah, NJ: Lawrence Erlbaum Associates
  40. Kelly, G. J., Drucker, S., & Chen, K. (1998). Students' reasoning about electricity: combining performance assessment with argumentation analysis. International Journal of Science Education, 20(7), 849-871 https://doi.org/10.1080/0950069980200707
  41. Kelly G. J. & Hilton-Brown, B. (2001, March). Discourse studies of science education: a review of the literature. Paper presented at the annual meeting of the National Association for Research in Science Teaching, St. Louis, MO.
  42. Kelly, G. J. & Talmo, A. (2002). Epistemic levels in argument: An analysis of university oceanography students' use of evidence in writing. Science Education, 86(3), 314- 342 https://doi.org/10.1002/sce.10024
  43. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld(Eds.), Emergence of Mathematical Meaning. Hillsdale, NJ: Lawrence Erlbaum
  44. Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62(2), 155-178 https://doi.org/10.17763/haer.62.2.9r424r0113t670l1
  45. Kuhn, D. (1993). Science argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337 https://doi.org/10.1002/sce.3730770306
  46. Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentative reasoning. Cognition and Instruction, 15(3), 287-315 https://doi.org/10.1207/s1532690xci1503_1
  47. Latour, B., & Woolgar, S. (1986). Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press
  48. Lemke, J. L. (1990). Talking Science: Language, Learning, and Values. Norwood, NJ: Ablex
  49. Lepper, M. R. & Hodell, M. (1989). Intrinsic motivation in the classroom. In C. Ames & R. E. Ames(Eds.), Research on Motivation in Education: Goals and Cognitions (VoI.3, pp. 73-105). Orlando, FL: Academic Press
  50. Millar, R. H. (1989). What scientific method and can it be taught? In J. Wellington (Ed.), Skills and processes in Science Education: A critical analysis. London: Routledge
  51. Millar, R. H. (1998). Rhetoric and reality: What practical work in Science Education is really for. In J. J. Wellington (Ed.), Practical work in school science (pp 16-31). NY: Routledge
  52. National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press
  53. Newton, P., Driver, R, & Osborne, J. (1999). The place of argumentation in the pedagogy of school science, International Journal of Science Education, 21(5), 553-576 https://doi.org/10.1080/095006999290570
  54. Niaz, M., Aguilera, D., Maza, A., & Liendo, G. (2002). Arguments, contradictions, resistances, and conceptual change in students' understanding of atomic structure. Science Education, 86(4), 505-525 https://doi.org/10.1002/sce.10035
  55. Pera, M. (1994). The Discourses of Science (C. Botsford, Trans.). Chicago: The University of Chicago Press
  56. Rigano, D. L. & Ritchie, S. M. (1995). Student disclosure of fraudulent practice in school laboratories. Research in Science Education, 25(4), 353-363 https://doi.org/10.1007/BF02357382
  57. Roberts, R. and Gatt, R. (2002). Investigations: collecting and using evidence. In D. Sang, and V. Wood-Robinson (Eds.), Teaching secondary scientific enquiry (pp 18-49). London: John Murray
  58. Rogers, E. M. (1948). Science in general education. In E. J. McGrath (Ed.), Science in general education. Dubuque, IA: William C. Brown Publishers
  59. Roth, W. M. (1995). Authentic School Science. Boston, MA: Kluwer Academic Publishers
  60. Russell, T. L. (1983). Analyzing arguments in science classroom discourse: Can teachers' questions distort scientific authority? Journal of Research in Science Teaching, 20(1), 27-45 https://doi.org/10.1002/tea.3660200104
  61. Simon, S., Erduran, S., & Osborne, J. (2002, April). Enhancing the quality of argumentation in school science. Paper presented at the annual meeting of the National Association for Research in Science Teaching, New Orleans, Louisiana
  62. Surral, C. S., Sunal, D. W., Tirri, K. (2001, April). Using evidence in scientific reasoning: Exploring characteristics of middle school students' argumentation. Paper presented at the annual meeting of the American Educational Research Association, Seattle, WA
  63. Suppe, F. (1998). The structure of a scientific paper. Philosophy of Science, 65(3), 381-405 https://doi.org/10.1086/392651
  64. Sutton, C. R. (1992). Words, Science and Learning. Developing Science and Technology Series. Buckingham, UK: Open University Press
  65. Taylor, C. (1996). Deiining science. Madison, WI: University of Wisconsin Press
  66. Toulmin, S. E. (1958). The Uses of Argument. Cambridge, UK.: C.U.P.
  67. van Eemeren, F. H., Grootendorst, R., Henkemans, F. S., Blair, J. A., Johnson, R. H., Krabbe, E. C. W., Plantin, C., Walton, D. N., Willard, C. A., Woods, J., & Zarefsky, D. (1996). Fundamentals of argumentation theory: a handbook of historical backgrounds and contemporary developments. Mahwah, NJ: Lawrence Erlbaum Associates
  68. van Zee, E. H. (2000). Analysis of a studentgenerated inquiry discussion. International Journal of Science Education, 22(2), 115-142 https://doi.org/10.1080/095006900289912
  69. Vygotsky, L. (1978). Thought and language. Cambridge, MA: MIT Press
  70. Walton, D. N. (1996). Argumentation schemes for presumptive reasoning. NJ: LEA
  71. Watson, J. R. (2000). The role of practical work. In M. Monk & J. Osborne (Eds.), Good practice in science teaching: what research has to say (pp.57-71). Buckingham, UK: Open University Press
  72. Watson, J.R., Swain, J.R.L, & McRobbie, C. (2004) Students' discussions in practical scientific inquiries. International Journal of Science Education, 26(1), 25-45 https://doi.org/10.1080/0950069032000072764
  73. Wellington, J. J. (1998). Practical work in science: time for a reappraisal. In J. J. Wellington (Ed.), Practical work in school science (pp. 3-15). NY: Routledge
  74. Wellington, J. J. & Osborne, J. (2001). Language and literacy in science education. Buckingham, UK: Open University Press
  75. Yore, L. D., Hand, B. M., & Florence, M., K. (2004). Scientists' views of science, models of writing, and science writing practices. Journal of Research in Science Teaching, 41(4), 338-369 https://doi.org/10.1002/tea.20008
  76. Zembal-Saul, C., Munford, D., Crawford, B., Friedrichsen, P., & Land, S. (2002). Scaffolding preservice science teachers' evidence-based arguments during an investigation of natural selection. Research in Science Education, 32(4), 437-463 https://doi.org/10.1023/A:1022411822951
  77. Zeidler, D. L. (1997). The central role of fallacious thinking in science education. Science Education, 81(4), 483-496 https://doi.org/10.1002/(SICI)1098-237X(199707)81:4<483::AID-SCE7>3.0.CO;2-8