• Title/Summary/Keyword: Scientific Production

Search Result 574, Processing Time 0.027 seconds

A Study on the Creation of Scientific Visualization for the Public (일반인을 대상으로 하는 과학 시각화 제작 연구)

  • You, Mi
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.671-681
    • /
    • 2015
  • This paper presents an extended scientific visualization for the public over the scientific visualization targeting for scientists. Our scientific visualization pursues both transmission of scientific information and good-looking visuals. First of all, we examine a tendency to produce scientific images that make the public understand science, even though they are not professional scientists. As a result, we can find several cases that actively generate scientific visualizations for the public. Among them, several research institutes possess own production studio. As the production of scientific images is a convergence field combined of art and science, cooperation between artists and scientists is necessary. Therefore, in-depth communication between them is essential at the planning stage. Moreover, continuous feedbacks between two groups in the production stage, the next stage of the planning, make the scientific visualization to perfection. In this paper, we present 2 modeling methods that are easily encountered during producing scientific visualizations and shading and rendering methods for generating photorealistic images. The concept of an extended scientific visualization that we present shows a new vision of the scientific visualization field.

Normalization and Valuation of Research Evaluation Indicators in Different Scientific Fields

  • Chakoli, Abdolreza Noroozi;Ghazavi, Roghayeh
    • Journal of Information Science Theory and Practice
    • /
    • v.4 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • Given the difference in research performance in various scientific fields, this study aims to weight and valuate current indicators used for evaluation of scientific productions (publications), in order to adjust these indicators in comparison to each other and make possible a more precise evaluation of scientific productions. This is a scientometrics study using documentary, evaluative, and survey techniques. The statistical population consisted of 106 top Iranian researchers, scientists, and scientific and research managers. Then their research résumé information was gathered and analyzed based on research questions. In order to compare values, the data gathered from research production performance of the population was weighted using Shannon entropy method. Also, the weights of each scientific production importance according to expert opinions (extracted from other works) was analyzed and after adjustment the final weight of each scientific production was determined. A pairwise matrix was used in order to determine the ratios. According to the results, in the area of engineering sciences, patents (0.142) in the area of science, international articles (0.074) in the area of humanities and social sciences, books (0.174), and in the area of medical sciences, international articles (0.111) had the highest weight compared to other information formats. By dividing the weights for each type of publication, the value of each scientific production compared to other scientific productions in the same field and productions of other fields was calculated. Validation of the results in the studied population resulted in very high credibility for all investigated indicators in all four fields. By using these values and normalized ratios of publication indicators it is possible to achieve precise and adjusted results, making it possible to feasibly use these results in realistic policy making.

A 'Mode 3' Science Policy Framework for South Korea - Toward a Responsible Innovation System

  • Kim, Gouk Tae
    • STI Policy Review
    • /
    • v.8 no.2
    • /
    • pp.23-48
    • /
    • 2017
  • This article advocates for a Mode 3 science policy. Compared to the university research-based Mode 1 knowledge production system and the knowledge application-centric Mode 2 innovation system, Mode 3 can be defined as a system that integrates both Mode 1 and Mode 2-type knowledge production models. In this article, based on the major characteristics of the Mode 3 scientific knowledge production system, I agree with the advocates of Mode 3 that constructing a knowledge society requires an inclusive form of knowledge production and innovation system through the democratization of knowledge production as well as the promotion of social values. Moreover, the mechanisms for creating accountable innovation in the Mode 3 system should be given more attention from the science research and policy communities to make public policy for scientific and technological innovation more reflective of social changes. Similar to the ways that the Mode 1 and Mode 2 scientific knowledge production approaches have influenced the development of science policy models, the Mode 3 scientific knowledge production approach, or Mode 3 science, also has the potential to shape a new science policy model. I will refer to this as Mode 3 science policy. In an effort to conceptualize the democracy- and society-centric Mode 3 science policy model, I will articulate science policy strategies in four science policy domains in South Korea from the context of the Mode 3 science approach. These include (1) evaluation of publicly-funded research activities, (2) valorization of scientific knowledge (that is, enhancement of the value of scientific knowledge through governmental action), (3) development of a science policy decision-making support system, and (4) anticipatory foresight of science, technology and society. When adopting and implementing a Mode 3 science framework, one progressive change is to increase socially desirable innovation such as responsible innovation.

The Development and Application Effects of STEAM Program Utilizing Animation Production about 'Structure and Function of the Our Body' ('우리 몸의 구조와 기능' 애니메이션 제작을 활용한 프로그램 개발 및 적용 효과)

  • Lee, Sang-Ho;Hong, Seung-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.2
    • /
    • pp.263-274
    • /
    • 2019
  • The purpose of this study is to investigate the effect of STEAM program on students' academic achievement, creative problem-solving ability, scientific inquiry ability and scientific interests of elementary school students. For this, we developed a STEAM program to utilize animation production about 'structure and function of the our body' unit in 5th grade. The STEAM program was developed for a total of 9 sessions and was applied to the experimental group. The theoretical lesson of the 2009 revised curriculum was consisted of 11 sessions and was applied to the comparative group. The results of study showed significant differences of the students' academic achievement, creative problem-solving ability to the experimental group participating in the STEAM program and also showed significant effects in the domains of subject contents and teacher preference, which are the areas of scientific interests compared to the comparative group. This means that the STEAM program to utilize animation production about 'structure and function of the our body' developed in consideration of the characteristics of elementary students positively influenced the academic achievement, creative problem-solving ability and scientific interests of elementary school students. In the future we need to develop STEAM programs more variously that utilize animation production and that it needs to be applied to elementary schools.

Kinetics of Cell Growth and Cyclosporin A Production by Tolypocladium inflatum when Scaling Up from Shake Flask to Bioreactor

  • El Enshasy, H.;Fattah, Y. Abdel;Atta, A.;Anwar, M.;Omar, H.;Magd, S. Abou El;Zahra, R. Abou
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.128-134
    • /
    • 2008
  • The kinetics of cell growth and Cyclosporin A (Cyc A) production by Tolypocladium inflatum were studied in shake flasks and bioreactors under controlled and uncontrolled pH conditions. In the case of the shake flask, the production time was extended to 226 h and the maximal antibiotic concentration was 76 mg/l. When scaling up the cultivation process to a bioreactor level, the production time was reduced to only 70h with a significant increase in both the cell growth and the antibiotic production. The maximal dry cell weights in the case of the controlled pH and uncontrolled pH cultures in the bioreactor were 22.4g/l and 14.2g/l, respectively. The corresponding maximal dry cell weight values did not exceed 7.25g/l with the shake flask cultures. The maximal values for Cyc A production were 144.72 and 131.4 mg/l for the controlled and uncontrolled pH cultures, respectively. It is also worth noting that a significant reduction was observed in both the dry cell mass and the antibiotic concentration after the Cyc A production phase, whereas the highest rate of antibiotic degradation was observed in the stirred tank bioreactor with an uncontrolled pH. Morphological characterization of the micromorphological cell growth (mycelial/pellet forms) was also performed during cultivation in the bioreactor.

Hydrogen production using high temperature reactors: an overview

  • Deokattey, Sangeeta;Bhanumurthy, K.;Vijayan, P.K.;Dulera, I.V.
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.13-33
    • /
    • 2013
  • The present work is an attempt to provide an overview, about the status of R&D and current trends in Hydrogen Production using High Temperature Reactors. Bibliographic references from the INIS database, the Science Direct database and the NTIS database were downloaded and analyzed. Ten year data on the subject, published between 2001 and 2010, was selected for the study. Appropriate qued ry formulations on these databases, resulted in the retrieval of 621 unique bibliographic records. Using the content analysis method, all the records were analyzed. Part One of the analysis details Scientometric R&D indicators, Part Two is a subject-based analysis, grouped under: A. International Initiatives and Programmes for Hydrogen Production; B. European R&D initiatives for Hydrogen production; C. National Initiatives and Programmes for Nuclear Hydrogen Production; D. Reactor Technologies for Nuclear Hydrogen production; E. Fuel Developments; F. Hydrogen Production Processes using HTRs and G. Materials Consideration for Nuclear Hydrogen Production. The results of this analysis are summarized in the study.

Research on the Making Technology of Virtual Orchestral Instrument

  • Wang, Yan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.77-87
    • /
    • 2017
  • In this paper, we propose an analysis of the sound source of virtual orchestral music in detail by using the production technology of sampling and playback, and technical experiments and verification for the most advanced Hollywood Library series of timbre and the timbre production and control technology of Vienna instrument Pro and other softwares, to find their solutions and come up with the best timbre production method for orchestral music from the perspective of the specific design ideas of the productions of virtual orchestral instruments. The so-called virtual orchestral instruments are non-real orchestral instruments, which are based on the imitation of timbre of real orchestral instruments, processed and synthesized through the scientific and technological means, and produced by the use of electronic equipments or computers. The study of virtual timbre production technology is very important, and it is like the study of composers' creative techniques. Not only scientific and advanced timbre production methods can be obtained from the study, but also new ways of future timbre production are expected to be explored.

A typology of Collaboration Modes for Scientific and Technological Knowledge Production and Sharing (과학기술지식 생산과 공유를 위한 협력 유형분류체계)

  • Hwang, Kumju
    • Knowledge Management Research
    • /
    • v.11 no.2
    • /
    • pp.133-152
    • /
    • 2010
  • This paper suggests a typology of the modes of collaboration for scientific and technological knowledge production and sharing (STKPS) based on knowledge communication types, including organizational factors, communication channel, intensity, and decision-making, that affect STKPS processes. It is mainly designed to rearrange ideas about collaboration drawn from the literature in order to develop a conceptual framework for categorizing modes of collaboration based on how communication patterns shape four modes of collaboration. In the conclusion and discussion part, practical implications, limitations of this study, and further studies are discussed. In particular, the practical implications propose communication patterns suitable for five stages of collaboration processes. As the collaboration initiation or set-up stage is critical, extensive face-to-face communication is recommended in the auditing stage. In the execution stage, media-based communication can be actively utilized, because collaborators will mostly exchange explicit codified knowledge supported by IT. The evaluation and reinforcement stages concentrate on tacit knowledge exchange and explicit knowledge evaluation, which requires intensive face-to-face communication including negotiations for evaluating collaboration outcomes and partnership.

  • PDF

Bioprocess Development for Production of Alkaline Protease by Bacillus pseudofirmus Mn6 Through Statistical Experimental Designs

  • Abdel-Fattah, Y.R.;El-Enshasy, H.A.;Soliman, N.A.;El-Gendi, H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.378-386
    • /
    • 2009
  • A sequential optimization strategy, based on statistical experimental designs, is employed to enhance the production of alkaline protease by a Bacillus pseudofirmus local isolate. To screen the bioprocess parameters significantly influencing the alkaline protease activity, a 2-level Plackett-Burman design was applied. Among 15 variables tested, the pH, peptone, and incubation time were selected based on their high positive significant effect on the protease activity. A near-optimum medium formulation was then obtained that increased the protease yield by more than 5-fold. Thereafter, the response surface methodology(RSM) was adopted to acquire the best process conditions among the selected variables, where a 3-level Box-Behnken design was utilized to create a polynomial quadratic model correlating the relationship between the three variables and the protease activity. The optimal combination of the major medium constituents for alkaline protease production, evaluated using the nonlinear optimization algorithm of EXCEL-Solver, was as follows: pH of 9.5, 2% peptone, and incubation time of 60 h. The predicted optimum alkaline protease activity was 3,213 U/ml/min, which was 6.4 times the activity with the basal medium.