Browse > Article
http://dx.doi.org/10.4014/jmb.0806.380

Bioprocess Development for Production of Alkaline Protease by Bacillus pseudofirmus Mn6 Through Statistical Experimental Designs  

Abdel-Fattah, Y.R. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications)
El-Enshasy, H.A. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications)
Soliman, N.A. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications)
El-Gendi, H. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.4, 2009 , pp. 378-386 More about this Journal
Abstract
A sequential optimization strategy, based on statistical experimental designs, is employed to enhance the production of alkaline protease by a Bacillus pseudofirmus local isolate. To screen the bioprocess parameters significantly influencing the alkaline protease activity, a 2-level Plackett-Burman design was applied. Among 15 variables tested, the pH, peptone, and incubation time were selected based on their high positive significant effect on the protease activity. A near-optimum medium formulation was then obtained that increased the protease yield by more than 5-fold. Thereafter, the response surface methodology(RSM) was adopted to acquire the best process conditions among the selected variables, where a 3-level Box-Behnken design was utilized to create a polynomial quadratic model correlating the relationship between the three variables and the protease activity. The optimal combination of the major medium constituents for alkaline protease production, evaluated using the nonlinear optimization algorithm of EXCEL-Solver, was as follows: pH of 9.5, 2% peptone, and incubation time of 60 h. The predicted optimum alkaline protease activity was 3,213 U/ml/min, which was 6.4 times the activity with the basal medium.
Keywords
Haloalkaliphiles; optimization of alkaline protease; statistical experimental design;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Abdel-Fattah, Y .R. and Z. A. Olama. 2002. L-Asparaginase produ3.ction by Pseudomonas aeruginosa in solid-state culture: Evaluation and optimization of culture conditions using factorial designs. Proc. Biochem. 38: 115-122   DOI   ScienceOn
2 Anson, M. L. 1938. Estimation of pepsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22: 79-89   DOI   PUBMED
3 Anwar, A. and M. Saleemuddin. 1998. Alkaline proteases: A review. Biores. Technol. 64: 175-183   DOI   ScienceOn
4 Chang, Y.-N., J.-C. Huang, C.-C. Lee, I.-L. Shih, and Y.-M. Treng. 2002. Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus rubber. Enz. Microbial Technol. 30: 889-894   DOI   ScienceOn
5 Francis, F., A. Sabu, K.-M. Nampoothiri, S. Ramachandran, S. Ghosh, G. Szakacs, and A. Pandey. 2003. Use of response surface methodology for optimizing process parameters for the production of $\alpha$-amylase by Aspergillus oryzae. Biochem. Eng. J. 15: 107-115   DOI   ScienceOn
6 Horikoshi, K. 1971. Production of alkaline enzymes by alkalophilic microorganisms. Part II. Alkaline amylase produced by Bacillus No. A-40-2. Agric. Biol. Chem. 35: 1783-1791   DOI
7 Nobuaki, F. and Y. Kazuhiko. 1987. Decomposition of gelatin layers on x-ray films by the alkaline protease from Bacillus sp. Hakkokogaku Kaishi 65: 531-534
8 Patel, R., M. Dodia, and S. P. Singh. 2005. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem. 40: 3569-3575   DOI   ScienceOn
9 Puri, S., Q.-K. Beg, and R. Gupta. 2002. Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr. Microbiol. 44: 286-290   DOI   ScienceOn
10 Reddy, L. V. A., Y.-J. Wee, J.-S. Yun, and H.-W. Ryu. 2008. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Biores. Technol. 99: 2242-2249   DOI   ScienceOn
11 Shikha, S. A. and N.-S. Darmwal. 2007. Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Biores. Technol. 98: 881-885   DOI   PUBMED   ScienceOn
12 Vidyasagar, M., S.-B. Prakash, and K. Sreeramulu. 2006. Optimization of culture condition for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeomericum sp. TSS101. J. Lett. Appl. Microbiol. 43: 385-391   DOI   ScienceOn
13 Sinha, N. and T. Satyanarayana. 1991. Alkaline protease production by thermophilic B. licheniformis. Indian J. Microbiol. 31: 425-430
14 Box, G. E. P. and D. W. Behnken. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475   DOI   ScienceOn
15 Gupta, R., Q. K. Beg, S. Khan, and B. Chauhan. 2002. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 60: 381-395   DOI   ScienceOn
16 Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98
17 Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidam, J.A. Smith, and K. Struhl, K. (eds). 1999. Short Protocols in Molecular Biology. John Willey and Sons, Inc. NY
18 Beg, Q. K., V. Sahai, and R. Gupta. 2003. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Proc. Biochem. 39: 203-209   DOI   ScienceOn
19 Nehete, P. N., V. D. Shah, and R. M. Kothari. 1985. Profiles of alkaline protease production as a function of composition of the slant, age, transfer and isolate number and physiological state of culture. Biotechnol. Lett. 7: 413-418   DOI
20 Falahatpishe, H., M. Jalali, N. Badami, N. Mardani, and K. Khosravi-Darani. 2007. Production and purification of a protease from an alkalophilic Bacillus sp. 2-5 strain isolated from soil. Iranian J. Biotechnol. 5: 110-113
21 Johnvesly, B. and G. R. Naik. 2001. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in chemically defined medium. Proc. Biochem. 37: 139-144   DOI   ScienceOn
22 Page, R. D. M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12: 357-358
23 Abdel-Fattah, Y. R., H. M. Saeed, Y. M. Gohar, and M. A. El-Baz. 2005. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Proc. Biochem. 40: 1707-1714   DOI   ScienceOn
24 Rao, M. B., A. M. Tankasle, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbial Mol. Biol. Rev. 62: 597-635   ScienceOn
25 Denizci, A. A., D. Kazan, E. C. A. Abeln, and A. Erarslan. 2004. A newly isolated Bacillus clausii GMBAE 42: An alkaline protease producer capable to grow under highly alkaline conditions. J. Appl. Microbiol. 96: 320-327   DOI   ScienceOn
26 Kumar, C. G. and H. Takagi. 1999. Microbial alkaline protease: From a bioindustrial view. Biotechnol. Adv. 17: 561-594   DOI   ScienceOn
27 Tari, C., H. Genckal, and F. Tokatli. 2006. Optimization of a growth medium using a statistical approach for the production of an alkaline protease from a newly isolated Bacillus sp. L21. Proc. Biochem. 41: 659-665   DOI   ScienceOn
28 Horikoshi, K. 2006. Alkaliphiles, Genetic Properties and Applications of Enzymes, p. 4. Kodansha Ltd., Tokyo
29 Varela, H., M. D. Ferrari, L. Belobradjic, R. Weyrauch, and M. L. Loperena. 1996. Effect of medium composition on the production by a new Bacillus subtilis isolate of protease with promising unhairing activity. World J. Microbiol. Biotechnol. 12: 643-645   DOI   ScienceOn
30 Stowe, R. A. and R. P. Mayer. 1966. Efficient screening of process variables. Ind. Eng. Chem. 58: 36-40
31 Kole, M. M., I. Draper, and D. F. Gerson. 1988. Production of protease by Bacillus subtilis using simultaneous control of glucose and ammonium concentrations. J. Chem. Technol. Biotechnol. 41: 197-206   DOI   ScienceOn
32 El-Helow, E. R., Y. R. Abdel-Fattah, K. M. Ghanem, and E. A. Mohamad. 2000. Application of the response surface methodology for optimizing the activity of an aprE-driven gene expression system in Bacillus subtilis. Appl. Microbiol. Biotechnol. 54: 515- 520   DOI   ScienceOn
33 Patel, R., M. Dodia, and S.-P. Singh. 2005. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Proc. Biochem. 40: 3569-3575   DOI   ScienceOn
34 Haaland, P. D. 1989. Statistical problem solving, pp. 1-18. In P. D. Haaland (ed.). Experimental Design in Biotechnology. Marcel Dekker, Inc., New York
35 Hameed, A., T. Keshavarz, and C. S. Evans. 1999. Effect of dissolved oxygen tension and pH on the production of extracellular protease from a new isolate of Bacillus subtilis K2, for use in leather processing. J. Chem. Technol. Biotechnol. 74: 5-8   DOI   ScienceOn
36 Joo, H.-S., C. G. Kumar, G.-C. Park, S. R. Paik, and C. S. Chang. 2003. Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some ome properties. J. Appl. Microbiol. 95: 267-272   DOI   ScienceOn
37 Kojima, M., M. Kanai, M. Tominaga, S. Kitazume, A. Inoue, and K. Horikoshi. 2006. Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles 10: 229-235   DOI   ScienceOn
38 Mehta, V. J., J. T. Thumar, and S. P. Singh. 2006. Production of alkaline protease from an alkaliphilic actinomycete. Biores. Technol. 97: 1650-1654   DOI   ScienceOn
39 Patel, R. K., M. S. Dodia, R. H. Joshi, and S. P. Singh. 2006. Production of extracellular halo-alkaline protease from a newly isolated haloalkaliphilic Bacillus sp. isolated from seawater in Western India. World J. Microbiol. Biotechnol. 22: 375-382   DOI   ScienceOn
40 Beg, Q.K., R. K. Saxena, and R. Gupta. 2002. De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed batch operations. Process Biochem. 37: 1103-1109   DOI   ScienceOn
41 Plackett, R. L. and J. P. Burman. 1946. The design of optimum multi-factorial experiments. Biometrika 33: 305-325   DOI   ScienceOn