• Title/Summary/Keyword: Scientific Model

Search Result 1,315, Processing Time 0.03 seconds

A Study on The Effect of Molecular Movement Model Based Instruction on High School Students' Conceptions of diffusion and Osmosis (확산과 삼투 분자운동 모형을 활용한 수업의 개념변화에의 효과)

  • Cho, Jung-Il;Lee, Hyung-Uk
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.3
    • /
    • pp.293-303
    • /
    • 1994
  • The purpose of this study was to find the effect of molecular movement model based instruction on high school students' conceptions of diffusion and osmosis. The study was composed of two groups, the traditional instruction group in which the so-called traditional instruction was performed, and the other group in which interventions by researchers were made. The subjects of the traditional instruction group consisted of a total of 242 high school students from Seoul, Gwangju and Mokpo. The subjects of the model based instruction group consisted of 177 first-year high school students in Mokpo. The study was focused on the use of the term of 'molecular movement' in their explanation of diffusion and osmosis in the correct contexts. In general, students who got the molecular movement model based instruction showed more frequent use of the terms of 'molecular movement' in the correct contexts than the control group students did. It was found that misconceptions including teleological explanations changed into scientific explanations by the intervention. It seemed that the molecular movement model led students to make scientific explanations on natural phenomena. A further research is recommended to assess the improvement of teleological explanation and scientific attitude by the molecular movement model.

  • PDF

Assessment of an Aesthetic Model of Science for NOS Teaching (예비교사의 과학의 본성 지도를 위한 과학의 미학적 모델 측정 방안)

  • Kwon, Sunggi;Nam, Ilkyun
    • Journal of Science Education
    • /
    • v.44 no.2
    • /
    • pp.197-204
    • /
    • 2020
  • In order to teach the nature of science which is one of the goals of science education, the aesthetic model of science was developed into a two-dimensional model through theoretical reviews on the aesthetic aspect of science. We represented 10 kinds of scientific experiments that scientists thought are beautiful in the aesthetic space of science. This paper tried to represent the greatest and famous scientific experiments in the history of science into the aesthetic space of science to find the suitability or usefulness of that model. At the same time, we were able to develop measuring tools as the Likert-scale with pictures of scientific experiments. Through this, we propose various teaching approaches on the nature of science (NOS) based on the aesthetic model of science and the potential for utilization in measuring the effects of the ways of teaching NOS.

Computational methodology to determine the strength of reinforced concrete joint

  • Sasmal, Saptarshi;Vishnu Pradeesh, L.;Devi, A. Kanchana;Ramanjaneyulu, K.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.61-77
    • /
    • 2016
  • Seismic performance of structures depends on the force flow mechanism inside the structure. Discontinuity regions, like beam-column joints, are often affected during earthquake event due to the complex and discontinuous load paths. The evaluation of shear strength and identification of failure mode of the joint region are helpful to (i) define the strength hierarchy of the beam-column sub-assemblage, (ii) quantify the influence of different parameters on the behaviour of beam-column joint and, (iii) develop suitable and adequate strengthening scheme for the joints, if required, to obtain the desired strength hierarchy. In view of this, it is very important to estimate the joint shear strength and identify the failure modes of the joint region as it is the most critical part in any beam-column sub-assemblage. One of the most effective models is softened strut and tie model which was developed by incorporating force equilibrium, strain compatibility and constitutive laws of cracked reinforced concrete. In this study, softened strut and tie model, which incorporates force equilibrium equations, compatibility conditions and material constitutive relation of the cracked concrete, are used to simulate the shear strength behaviour and to identify failure mechanisms of the beam-column joints. The observations of the present study will be helpful to arrive at the design strategy of the joints to ensure the desired failure mechanism and strength hierarchy to achieve sustainability of structural systems under seismic loading.

Identification of Carotenoids from Green Alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and Their Antioxidant Properties

  • Ranga, Rao;Sarada, A.R.;Baskaran, V.;Ravishankar, G.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1333-1341
    • /
    • 2009
  • Haematococcus pluvial is, a green alga, accumulates astaxanthin (3,3'-dihydroxy-$\beta$,$\beta$'-carotene-4,4'-dione) upto 2-3% on a dry weight basis. In the present study, identification of carotenoids from Haematococcus cyst cell extract by HPLC and LC-MS (APCI) and their antioxidant properties were evaluated in in vitro model systems. The extract exhibited 89% and 78% antioxidant activities in the $\beta$-carotene linoleate model and the hydroxyl radical scavenging model, at 9 ppm of total carotenoid, respectively. The extract also showed 80%, 85%, and 79% antioxidant activities against lipid peroxidation in the kidney, brain, and liver of rats. Low-density lipoprotein oxidation induced by $Cu^{2+}$ ions was also protected (45%, 64%, and 75%) by the extract in a dose-dependent manner with different carotenoid levels. Thiobarbituric acid reactive substances concentration in the blood, liver, and kidney of rats were also significantly (p<0.005) decreased in H. pluvialis-treated rats. The potent antioxidant activity is attributable to various carotenoids present in the extract.

A Study on the Scientific Status of MIS (경영정보학의 학문적 위상에 관한 연구)

  • Oh, Jae-In
    • Asia pacific journal of information systems
    • /
    • v.8 no.3
    • /
    • pp.181-194
    • /
    • 1998
  • The inability of the management information systems (MIS) field to progress as a scientific discipline has been attributed to the lack of systematic research and a cumulative tradition, an identity crisis, and the poverty of scientism. While research on the status of MIS is very important in order to enhance the field as a scientific discipline, few have investigated this issue. Following Thomas Kuhn's idea of paradigm, this paper studies other fields to investigate when they progressed, when they did not, and why. After research paradigm was broken down into technology-push and demand-pull types, a model on the science life cycle was developed in an effort to explain the path how a science has progressed. A test of this model in the fields of physics and chemistry with an old historial background reveals that the scientific progress in the area of demand-pull is more desirable if this progress turns out to be in the right direction. An application of the model to the MIS field shows that the research paradigm in this field is mainly of technology-push. In order to shift this paradigm toward the demand-pull area, this paper suggests the research on the relationship among MIS subfields and the adoption of appropriate reference disciplines.

  • PDF

The Development of Question Sheet to Improve Middle School Students' Scientific Creativity (중학생들의 과학창의력 신장을 위한 발문지 개발)

  • Jeong, Ji-Eun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.3
    • /
    • pp.255-268
    • /
    • 2016
  • The education should adapt learners well to any changes and have them create something for such a era. Form the point of this view. question sheet was developed for middle school students to improve their scientific creativity. For this study, 146 item questions, which was from chapter 7 about solar system movement in the 3rd grade textbook for middle school students, was developed. For 5 weeks, 142 third graders in middle school were chosen and observed. They were divided into an experimental group and a control group. The teaching model using question sheet was applied to the experimental group, while the traditional teaching model, to the control group. This study compared two groups based on scientific creativity and academic achievement. In both scientific creativity and academic achievement, the group using question sheet showed meaningful differences. This result of the analysis indicated that teaching model using question sheet stimulated student's creative thinking and helped them to achieve a goal of lesson. The teaching model using question sheet can be used as an effective way to increase students' creativity.

A framework for modelling mechanical behavior of surrounding rocks of underground openings under seismic load

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Pei, Qitao;Wu, Yongjin
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.519-529
    • /
    • 2017
  • The surrounding rocks of underground openings are natural materials and their mechanical behavior under seismic load is different from traditional man-made materials. This paper proposes a framework to comprehensively model the mechanical behavior of surrounding rocks. Firstly, the effects of seismic load on the surrounding rocks are summarized. Three mechanical effects and the mechanism, including the strengthening effect, the degradation effect, and the relaxation effect, are detailed, respectively. Then, the framework for modelling the mechanical behavior of surrounding rocks are outlined. The strain-dependent characteristics of rocks under seismic load is considered to model the strengthening effect. The damage concept under cyclic load is introduced to model the degradation effect. The quantitative relationship between the damage coefficient and the relaxation zone is established to model the relaxation effect. The major effects caused by seismic load, in this way, are all considered in the proposed framework. Afterwards, an independently developed 3D dynamic FEM analysis code is adopted to include the algorithms and models of the framework. Finally, the proposed framework is illustrated with its application to an underground opening subjected to earthquake impact. The calculation results and post-earthquake survey conclusions are seen to agree well, indicating the effectiveness of the proposed framework. Based on the numerical calculation results, post-earthquake reinforcement measures are suggested.

Understanding of Group Modeling Process with Geological Field Trip applied on Social-Construction of Scientific Model: Focusing on Constraints (과학적 모델의 사회적 구성 수업을 적용한 야외지질학습에서 나타나는 조별 모델 구성과정 이해: 제약조건을 중심으로)

  • Choi, Yoon-Sung;Choi, Jong-Rim;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.303-320
    • /
    • 2017
  • Purpose of this study is understanding of group modeling process focusing on constraints with geological field trip applied on social-construction of scientific model. This study was carried out on 12 students of 3 groups who participate in the study 'S' gifted education center. Students were conducted to theme of 'How was formation of Mt. Gwanak?' on 2 field trip classes and 3 modeling classes. Semi-structured interviews, all discourse of field trip and modeling classes, records of personal and group activity were analyzed to constraints based on theoretical background proposed by Nersessian (2008). Results as follows. First, sources of constraints are scientific knowledge, contents observed by students during field trips and additional materials things to be explained by model during modeling class with geological field trip applied on social-construction of scientific model. Second, there are 3 types of constraints to affect making group modeling. It is that shared constraint which used commonly by all the group members. It called selected constraint that used during the initial modeling and later were reflected on for use in the group modeling. And it is that generated constraints, which were not in the initial modeling but were used later in the group modeling. This study suggests that not only the constraints can help to understand of making group model through how they used but also show that example of learning with geological field trip on social-construction of scientific model to contribute school science.

The Effects of a Circle-based Early Childhood Science Education Program Using Physical Movement on Young Children's Scientific Inquiry Ability, Scientific Attitude, Object Manipulation Ability and Spatial Ability (신체움직임을 활용한 순환학습기반 유아과학교육 프로그램이 유아의 과학적 탐구능력, 과학적 태도, 물체조작능력 및 공간능력에 미치는 효과)

  • Chung, Gibun;Kim, Jihyun
    • Korean Journal of Childcare and Education
    • /
    • v.15 no.6
    • /
    • pp.139-167
    • /
    • 2019
  • Objective: This study aims to investigate the effects of a learning cycle model-based early childhood education program using physical motion on young children's scientific inquiry ability, scientific attitude, object manipulation ability and spatial ability. Methods: The subjects of this study were 60 five-year-old children who were attending K-G City Childcare Center. The SPSS Window 21.0 program and content analysis method were used, and post-validation Tukey was conducted to examine the differences between the one-way ANOVA and the group. Results: Activities using body movement were practiced systematically based on the circle learning. Children could revise their pre-concept and concept of error by interacting with other children, teachers and the environment. Furthermore, children were attaining new knowledge while they were doing body movement activities, assessing and applying them to actual activities. Conclusion/Implications: This study is investigated a cyclic learning-based early childhood science education program using physical motion, which has significance in systematic and practical early childhood centered education for young children.

Analysis of Scientific Models in Science Textbooks for the 7th Grade (중학교 과학 교과서 물질 영역의 과학적 모형 유형 분석)

  • Kim, Ae-Jung;Park, Hyun-Ju;Kim, Chan-Jong;Kim, Heui-Baik;Yoo, June-Hee;Choe, Seung-Urn
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.3
    • /
    • pp.363-370
    • /
    • 2012
  • The purpose of the study was to classify scientific models in the seventh grade science textbooks of the 2007 revised science curriculum. The three chapters of 'three states of material', 'motion of molecule', and 'change of state and energy' were investigated. There were two types of the scientific model as 'mode of representation' and 'attribute of representation'. The mode of representation was composed of 'action model', 'analogical model', 'symbolic model', and 'theoretical model' and the attribute of representation was composed of 'static model' and 'dynamic model'. The results showed that the action model and the analogical model were used primarily in mode of representation. The dynamic model were widely used in attribute of representation. Area of matters dealt with conception of molecules and aimed for students to understand the arrangement and movement of molecule microscopically about macroscopic state in a daily life. Tis study could help to recognize the limitations of scientific models on current textbooks and offer more useful information in planning lessons and organizing textbooks for the future.