• Title/Summary/Keyword: Scientific Method

Search Result 2,004, Processing Time 0.03 seconds

Multi-Phase Flows and Image Processing: Level Set Method (다상유체와 영상처리 : 레벨셋 방법)

  • Kang, M.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.259-260
    • /
    • 2011
  • Using modern techniques from scientific computing and numerical analysis, natural phenomena or scientific experiment can be simulated effectively with a computer and used for computer graphics, for example as special effects for the film industry, manufacturing the thin film, multi-phase simulation and image processing. The Level Set method can make those things happen without a lot of difficulties. This method was devised by Osher and Sethian(1988) to represent dynamically moving interfaces as the zero level set of a scalar function that evolves in time. Since then, many researchers have worked on many applications using a Level Set Method. I will give a talk about the applications of the Level Set Method.

  • PDF

Recognition of the Nature of Science by Preservice Science Teachers on the Basis of the Atomic Model (원자모형에 기초한 예비과학교사들의 과학의 본성에 대한 인식)

  • An, Yu-La;Kim, Hyun-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.4
    • /
    • pp.539-556
    • /
    • 2011
  • The purpose of this study was to examine preservice secondary science teachers' understanding of the nature of science, by using nature of science (NOS) questionnaire on the basis of atomic model, and compare this to pre-studies. 'Understanding of nature of scientific model,' 'Tentativeness of scientific knowledge,' 'Subjectivity in science,' 'Use of inference and imagination,' 'Myths of the scientific method,' and 'Comparison between science and art.' were examined. Preservice teachers showed great comprehension of the tentativeness of scientific knowledge (the orbital model) and the subjectivity in science (the different interpretation about the experiment of particle scattering), but displayed the lowest comprehension of the scientific method. For understanding of nature of scientific model (the atomic model) and the comparison between science (Bohr's atomic model) and art (Picasso's work), preservice teachers brought out a combination of ontological and constructivist perspective and showed the contradictory thought about imagination in science research. In the result of comparison to pre-studies using the NOS instruments contains general terms, represented high levels of agreement about the tentativeness of scientific knowledge by using concrete examples of 'atomic model'. When concrete scientists such as Thomson, Rutherford, Bohr were presented, respondents revealed more informed views about the scientists' research method.

Application of THEMATICS to Non-Catalytic Ligand-Binding Proteins

  • Murga, Leonel F.;Ko, Jaeju;Ondrechen, Mary Jo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.221-227
    • /
    • 2005
  • THEMATICS is a simple computational method for predicting functional sites in proteins. The method computes the theoretical titration curves of the ionizable residues of a protein using its 3D structure, determines the residues with perturbed, non-Henderson-Hasselbalch titration behavior, and identifies clusters of these perturbed residues in physical proximity. We have shown previously that this method is highly successful in predicting catalytic sites in enzymes. In the present study, we apply the method to non-catalytic ligand-binding proteins. It is shown that THEMATICS can predict non-catalytic binding sites. The success rate is better than 80 % for a set of 30 non-catalytic, ligand-binding proteins. The application of the method to Glutamine-binding protein from E. coli is discussed in detail.

  • PDF

A Microgenetic Study on Scientific Question Generating Ability (과학적 의문 생성 능력에 대한 미시발생적 연구)

  • Oh, Chang-Ho;Kim, Min-Kyeong;Yang, Il-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.6
    • /
    • pp.752-769
    • /
    • 2010
  • The purpose of this study was to apply the microgenetic analysis method for development of information on an individual's change in a certain area during a consistent time period to seek change in scientific questions that elementary school students create. The study subjects were six 6th graders in I elementary school located in Kyunggido with the students conducting 6 sessions of two observational tasks about dry grapes contained in soda pop and candlelight. Information were collected through students' scientific question development paper, record of field observation and interviews. The results of this study are as follows: first, the number of scientific questions that the elementary school students developed showed a tendency for reduction; second, the changes in type of scientific questions bring different results, which depend on a particular characteristic of the tasks; third, By observing pattern changes in scientific questions of each individual, it was found that different results show for each time for the same task, which in other words means that there exists variability within an individual. Also, variability between individuals were shown by confirming that the change pattern for each person were diverse. Thus, the result of this study shows the following implications on education of scientific question development. For students, scientific question development mean more opportunities to increase the process of developing and acquiring knowledge. Therefore, it is important to create situations where one can come up with scientific questions. In addition, analysis in tasks' nature when selecting tasks would be necessary to develop diverse scientific questions.

Clarifying the Meaning of 'Scientific Explanation' for Science Teaching and Learning (과학 학습지도를 위한 '과학적 설명'의 의미 명료화)

  • Jongwon Park;Hye-Gyoung Yoon;Insun Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.6
    • /
    • pp.509-520
    • /
    • 2023
  • Scientific explanation is the main goal of scientists' scientific practice, and the science curriculum also includes developing students' abilities to construct scientific explanations as a major goal. Thus, clarifying its meaning is an important issue in the science education community. In this paper, the researchers identified three perspectives on 'scientific explanation' based on the scoping review method (Deductive-Nomological, Probabilistic, and Pragmatic explanation models). We argued that it is important to clarify and distinguish the meanings of 'scientific explanation' from other concepts used in science education, such as 'description', 'prediction', 'hypothesis', and 'argument' based on a review of the literature. It is also pointed out that there is a difference between 'scientific explanation' as a product and 'explaining scientifically' as communication, and several ways to revise achievement standard statements in the science curriculum are suggested, to guide students to construct scientific explanations and to help students to explain scientifically. By adopting the three scientific explanation models, the important factors to be considered were classified and organized, and examples of science learning activities for scientific explanation considering such factors were suggested. It is hoped that the discussion in this study will help establish clearer learning goals in science learning related to scientific explanation and aid the design of more appropriate learning activities accordingly.

The Effects of a Circle-based Early Childhood Science Education Program Using Physical Movement on Young Children's Scientific Inquiry Ability, Scientific Attitude, Object Manipulation Ability and Spatial Ability (신체움직임을 활용한 순환학습기반 유아과학교육 프로그램이 유아의 과학적 탐구능력, 과학적 태도, 물체조작능력 및 공간능력에 미치는 효과)

  • Chung, Gibun;Kim, Jihyun
    • Korean Journal of Childcare and Education
    • /
    • v.15 no.6
    • /
    • pp.139-167
    • /
    • 2019
  • Objective: This study aims to investigate the effects of a learning cycle model-based early childhood education program using physical motion on young children's scientific inquiry ability, scientific attitude, object manipulation ability and spatial ability. Methods: The subjects of this study were 60 five-year-old children who were attending K-G City Childcare Center. The SPSS Window 21.0 program and content analysis method were used, and post-validation Tukey was conducted to examine the differences between the one-way ANOVA and the group. Results: Activities using body movement were practiced systematically based on the circle learning. Children could revise their pre-concept and concept of error by interacting with other children, teachers and the environment. Furthermore, children were attaining new knowledge while they were doing body movement activities, assessing and applying them to actual activities. Conclusion/Implications: This study is investigated a cyclic learning-based early childhood science education program using physical motion, which has significance in systematic and practical early childhood centered education for young children.

Effects of 5E Learning-Cycle Model on Science Academic Achievements, Science Process Skill and Scientific Attitude of Elementary School Students (5E 순환학습이 초등학생의 과학 학업 성취도와 탐구 능력 및 과학적 태도에 미치는 효과)

  • Dong, Hyo-Kwan;Song, Mi-Young;Shin, Young-Joon
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.4
    • /
    • pp.567-575
    • /
    • 2010
  • The purpose of this study is to investigate the effectiveness of academic achievements, science process skill and scientific attitude. The subjects of this study were 68 fourth-grade elementary school students who were 33 students for the 5E learning cycle instruction and 35 students for traditional instruction. The control group was taught with traditional teaching method, while the experimental group was taught 'the change to the volume of material due to heat' unit of 4th grade with the developed learning cycle model. The results were as fellows: First, the learning cycle instruction is more effective for understanding of a concept related to the change to the volume of material due to heat. Second, the learning cycle model seems more effective for the expansion of both scientific inquiry ability and scientific attitude.

  • PDF

The Effects of Science Instruction Using Argumentation on Elementary School Students' Learning Motivation and Scientific Attitude (논의과정 활용 수업이 초등학생의 학습 동기와 과학태도에 미치는 영향*)

  • Lee Ha-Ryong;Nam Kyung-Hee;Moon Seong-Bae;Kim Yong-Gwon;Lee Seok-Hee
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.2
    • /
    • pp.183-191
    • /
    • 2005
  • The purpose of this study is to examine the efffcts of science instruction using argumentation, with Tolumin's structure of argument, on students' learning motivation and scientific attitude. In the instruction, well-structured problems selected to be argument, in which interactions among students are stressed. The subjects were classified into two groups: One group is composed of sixty-seven students (experimental group) who were participated in solving processes of the scientific argument tasks, and the other is composed of sixty-nine students (comparative group) who were participated in the traditional teaching method. The results of this study implied that experimental group has a positive effect on students' learning motivation and scientific attitude.

  • PDF

A New Online Calibration Algorithm for Array Antenna using Independent Component Analysis

  • Suk, Mi-Kyung;Lee, Jong-Hyun;Chun, Joo-Hwan;Park, Jin-Kyu;Kim, Yong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1568-1572
    • /
    • 2004
  • This paper proposes a new online calibration algorithm for the array antenna system. As you know, the several previous calibration methods for the mutual coupling did not estimate but measure mutual coupling effect at the real or test-bed system directly. Therefore we suggest some idea to compensate the calibration errors due to mutual coupling effect and mismatch in cables and electronic modules without the off-line calibration. In this work, we can calibrate the array antenna system under the operation of the system using Independent Component Analysis(ICA). This is what is called an online calibration. As you know, the ICA method has permutation and scaling problems. However, we solve problems of the ICA method and apply it to the calibration of an array antenna. The method simultaneously estimates the DOA(Direction of Arrival) of the signals, and calibrates the array for that specific angle. The proposed algorithm is evaluated by computer simulation and its behavior is illustrated by a numerical example.

  • PDF

Effects of the Astronomical Learning Program using SGIM on Metacognition and Science Process Skills in the Elementary Scientific Gifted (SGIM을 적용한 천문학습 프로그램이 초등과학영재의 메타인지와 과학탐구능력에 미치는 효과)

  • Shin, Myeung-Ryeul;Lee, Yong-Seob
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.3
    • /
    • pp.719-739
    • /
    • 2011
  • The purpose of this study was to find the effect of the astronomical learning program using SGIM on metacognition and science process skills in the elementary scientific gifted students. For this purpose, this research developed the astronomical learning program using SGIM. This program was totally consisted 9 lessen. there was 6 part in this program. It contained select the subject and small grouping (step 1-2), planing inquiry (step 3), doing inquiry (step 4-6), making a report (step 7), announcing (step 8), evaluation (step 9). To find the effect of the astronomical learning program using sgim on metacognition and science process skills in the elementary scientific gifted students. 20 participants was selected. These students were attended at a scientific gifted class (3rd grade) of an elementary school located in Ulsan. First, metacognition test and science process skills test was used to find the effect of the astronomical learning program using SGIM. And the results were analyzed by SPSSWIN 18.0. The results of this study were as follows. First, the astronomical learning program using SGIM was a positive effects on metacognition of the elementary scientific gifted students (t=3.371, p=.001). Second, the astronomical learning program using SGIM was a positive effects on science process skills of the elementary scientific gifted students (t=3.104, p=.021). According to this research, the astronomical learning program using SGIM was verified to improve metacognition and science process skills on the elementary scientific gifted students. It will be contribute on the curriculum construction of the gifted school or gifted class.