• Title/Summary/Keyword: Science and Technology Space

Search Result 3,589, Processing Time 0.042 seconds

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

Space Surveillance Radar Observation Analysis: One-Year Tracking and Orbit Determination Results of KITSAT-1, "우리별 1호"

  • Choi, Jin;Jo, Jung Hyun;Choi, Eun-Jung;Yu, Jiwoong;Choi, Byung-Kyu;Kim, Myung-Jin;Yim, Hong-Suh;Roh, Dong-Goo;Kim, Sooyoung;Park, Jang-Hyun;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • The Korean Institute of Technology Satellite (KITSAT-1) is the first satellite developed by the Satellite Technology Research Center and the University of Surrey. KITSAT-1 is orbiting the Earth's orbit as space debris with a 1,320 km altitude after the planned mission. Due to its relatively small size and altitude, tracking the KITSAT-1 was a difficult task. In this research, we analyzed the tracking results of KITSAT-1 for one year using the Midland Space Radar (MSR) in Texas and the Poker Flat Incoherent Scatter Radar (PFISR) in Alaska operated by LeoLabs, Inc. The tracking results were analyzed on a weekly basis for MSR and PFISR. The observation was conducted by using both stations at an average frequency of 10 times per week. The overall corrected range measurements for MSR and PFISR by LeoLabs were under 50 m and 25 m, respectively. The ionospheric delay, the dominant error source, was confirmed with the International Reference of Ionosphere-16 model and Global Navigation Satellite System data. The weekly basis orbit determination results were compared with two-line element data. The comparison results were used to confirm the orbital consistency of the estimated orbits.

SENSITIVITY CALIBRATION OF FAR-ULTRAVIOLET IMAGING SPECTROGRAPH (원자외선 분광기(FIMS)의 감도 측정)

  • Kim, I.J.;Seon, K.I.;Yuk, I.S.;Nam, U.W.;Jin, H.;Park, J.H.;Ryu, K.S.;Lee, D.H.;Han, W.;Min, K.W.;Edelstein Jerry;Korpela Eric
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.383-390
    • /
    • 2004
  • We describe the in-flight sensitivity calibration of the Far ultraviolet Imaging Spectrograph (FIMS, also known as SPEAR) onboard the first Korean science satellite, STSAT-1, which was launched in September 2003. The sensitivity calibration is based on a comparison of the FIMS observations of the hot white dwarf G191B2B, and two O-type stars Alpha-Cam, HD93521 with the HUT (Hopkins Ultraviolet Telescope) observations. The FIMS observations for the calibration targets have been conducted from November 2003 through May 2004. The effective areas calculated from the targets are compared with each other.

The development Plan of KASI GNSS Data Processing Software

  • Jo, Jung-Hyun;Cho, Sung-Ki;Lim, Hyung-Chul;Choi, Byung-Kyu;Jo, Jeong-Ho;Lee, Woo-Kyoung;Baek, Jeong-Ho;Choe, Nammi-Jo;Park, Jong-Uk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.501-503
    • /
    • 2006
  • We have processed the GPS data using several high quality GPS data processing softwares for last decade. Bernes and GIPSY II are some of them. Though these programs have different characteristics in terms of structures and processing philosophies, high quality results from these are still comparable. KASI Space Geodesy Research Division has developed several GNSS data processing softwares like the quasi real-time ionospheric parameter estimator, orbit propagator and estimator, and precision positioning estimator. However, we are currently in needs of our own comprehensive GNSS data processing software with the European Galileo system on the horizon. KASI team has worked on a preliminary pilot project for the software and is making block pieces for the software. The roadmap, the description, and brief results of KASIOPEA (KASI Orbit Propagator and EstimAtor) are presented in this paper.

  • PDF