• Title/Summary/Keyword: Science Problem-solving Model

Search Result 390, Processing Time 0.029 seconds

The Effect of Inquiry Instruction Strategy Enhancing the Activity of Making Variables to Improve on Students' Creative Problem Solving Skills (변인 탐색 활동을 강화한 탐구 수업 전략이 창의적 문제 해결력 신장에 미치는 효과)

  • Park, Jieun;Kang, Soonhee
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.5
    • /
    • pp.478-489
    • /
    • 2014
  • The purposes of this study were to develop teaching strategy enhancing the activity to explore variables and to examine the instructional influences on students' creative thinking skills and critical thinking skills. In this study, a model using listing-excluding-controlling variables (DPAS model) was designed and applied to the existing 'Teaching model for the enhancement of the creative problem solving skills'. And it was implemented to preservice science teachers for the one semester. Results indicated that the experimental group presented statistically meaningful improvement in creative thinking skills, especially in recognizing problems, making hypothesis, controlling of variables and interpreting & transforming of data (p<.05). In addition, the strategy contributed to improve critical thinking skills, especially in making hypothesis and making conclusion & generalization (p<.05).

A Study on the Job Shop Scheduling Using Improved Randomizing Algorithm (개선된 Randomizing 알고리즘을 이용한 Job Shop 일정계획에 관한 연구)

  • 이화기;김민석;이승우
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.141-154
    • /
    • 2004
  • The objective of this paper is to develop the efficient heuristic method for solving the minimum makespan problem of the job shop scheduling. The proposed heuristic method is based on a constraint satisfaction problem technique and a improved randomizing search algorithm. In this paper, ILOG programming libraries are used to embody the job shop model, and a constraint satisfaction problem technique is developed for this model to generate the initial solution. Then, a improved randomizing search algorithm is employed to overcome the increased search time of constrained satisfaction problem technique on the increased problem size and to find a improved solution. Computational experiments on well known MT and LA problem instances show that this approach yields better results than the other procedures.

Bayesian smoothing under structural measurement error model with multiple covariates

  • Hwang, Jinseub;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.709-720
    • /
    • 2017
  • In healthcare and medical research, many important variables have a measurement error such as body mass index and laboratory data. It is also not easy to collect samples of large size because of high cost and long time required to collect the target patient satisfied with inclusion and exclusion criteria. Beside, the demand for solving a complex scientific problem has highly increased so that a semiparametric regression approach could be of substantial value solving this problem. To address the issues of measurement error, small domain and a scientific complexity, we conduct a multivariable Bayesian smoothing under structural measurement error covariate in this article. Specifically we enhance our previous model by incorporating other useful auxiliary covariates free of measurement error. For the regression spline, we use a radial basis functions with fixed knots for the measurement error covariate. We organize a fully Bayesian approach to fit the model and estimate parameters using Markov chain Monte Carlo. Simulation results represent that the method performs well. We illustrate the results using a national survey data for application.

The structured multiparameter eigenvalue problems in finite element model updating problems

  • Zhijun Wang;Bo Dong;Yan Yu;Xinzhu Zhao;Yizhou Fang
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.493-500
    • /
    • 2023
  • The multiparameter eigenvalue method can be used to solve the damped finite element model updating problems. This method transforms the original problems into multiparameter eigenvalue problems. Comparing with the numerical methods based on various optimization methods, a big advantage of this method is that it can provide all possible choices of physical parameters. However, when solving the transformed singular multiparameter eigenvalue problem, the proposed method based on the generalised inverse of a singular matrix has some computational challenges and may fail. In this paper, more details on the transformation from the dynamic model updating problem to the multiparameter eigenvalue problem are presented and the structure of the transformed problem is also exposed. Based on this structure, the rigorous mathematical deduction gives the upper bound of the number of possible choices of the physical parameters, which confirms the singularity of the transformed multiparameter eigenvalue problem. More importantly, we present a row and column compression method to overcome the defect of the proposed numerical method based on the generalised inverse of a singular matrix. Also, two numerical experiments are presented to validate the feasibility and effectiveness of our method.

Solving Robust EOQ Model Using Genetic Algorithm

  • Lim, Sung-Mook
    • Management Science and Financial Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-53
    • /
    • 2007
  • We consider a(worst-case) robust optimization version of the Economic Order Quantity(EOQ) model. Order setup costs and inventory carrying costs are assumed to have uncertainty in their values, and the uncertainty description of the two parameters is supposed to be given by an ellipsoidal representation. A genetic algorithm combined with Monte Carlo simulation is proposed to approximate the ellipsoidal representation. The objective function of the model under ellipsoidal uncertainty description is derived, and the resulting problem is solved by another genetic algorithm. Computational test results are presented to show the performance of the proposed method.

A Seat Allocation Problem for Package Tour Groups in Airlines (항공사 패키지 여행 단체수요의 좌석할당 문제)

  • Song, Yoon-Sook;Lee, Hwi-Young;Yoon, Moon-Gil
    • Korean Management Science Review
    • /
    • v.25 no.1
    • /
    • pp.93-106
    • /
    • 2008
  • This study is focused on the problem of seat allocation for group travel demand in airlines. We first explain the characteristic of group demand and its seat allocation process. The group demand in air travel markets can be classified into two types : incentive and package groups. Allocating seats for group demand depends on the types of group demand and the relationship between airlines and travel agents. In this paper we concentrate on the package group demand and develop an optimization model for seat allocation on the demand to maximize the total revenue. With some assumptions on the demand distribution and the linear approximation technique, we develop a mixed IP model for solving our problem optimally. From the computational experiments, we can find our optimization model can be applied well for real-world application.

A New Approach for Resource Allocation in Project Scheduling with Variable-Duration Activities

  • Kim, Soo-Young;Leachman, Robert C.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.3
    • /
    • pp.139-149
    • /
    • 1994
  • In many project-oriented production systems, e. g., shipyards or large-scale steel products manufacturing, resource loading by an activity is flexible, and the activity duration is a function of resource allocation. For example, if one doubles the size of the crew assigned to perform an activity, it may be feasible to complete the activity in half the duration. Such flexibility has been modeled by Weglarz [13] and by Leachman, Dincerler, and Kim [7[ in extended formulations of the resource-constrained poject scheduling problem. This paper presents a new algorithmic approach to the problem that combines the ideas proposed by the aforementioned authors. The method we propose involves a two-step approach : (1) solve the resource-constrained scheduling problem using a heuristic, and (2) using this schedule as an initial feasible solution, find improved resource allocations by solving a linear programming model. We provide computational results indicating the superiority of this approach to previous methodology for the resource-constrained scheduling problem. Extensions to the model to admit overlap relationship of the activities also are presented.

  • PDF

Reductions of State Space for Solving Games (게임 풀이를 위한 상태 공간 축소)

  • Lee, Tae-Hoon;Kwon, Gi-Hwon
    • Journal of Korea Game Society
    • /
    • v.4 no.1
    • /
    • pp.58-66
    • /
    • 2004
  • This paper uses counterexamples for solving reachability games. An objective. of the game we consider here is to find out a minimal path from an initial state to the goal state. We represent initial states and game rules as finite state model and the goal state as temporal logic formula. Then, model checking is used to determine whether the model satisfies the formula. In case the model does not satisfy the formula, model checking generates a counterexample that shows how to reach the goal state from an initial state. In this way, we solve many of small-sized Push Push games. However, we cannot handle larger-sized games due to the state explosion problem. To mitigate the problem, abstraction is used to reduce the state space to be che cked. As a result, unsolved games are solved with the abstraction technique we propose inthis paper.

  • PDF

The Effect of Anchored Instruction on Elementary School Students' Problem-solving in Algorithm Learning (앵커드 수업을 통한 알고리즘 학습이 초등학생의 문제해결력에 미치는 영향)

  • Choi, Seo-Kyung;Kim, Yung-Sik
    • The Journal of Korean Association of Computer Education
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • The flow of computer education in modern knowledge and information society contains the computer science courses to cultivate the higher-level thinking abilities such as logical thinking skills, creativity, and problem-solving ability of learners. The purpose of this study is to recognize the need to promote the algorithmic thinking power to improve the problem solving ability of learners, to design the algorithm class based on the anchored instruction strategy for elementary school students and to verify the effectiveness. Anchored instruction model and cases are added to the class. Elementary school students were subjects and divided into a control group in which the traditional algorithm teaching method was conducted and an experimental group in which algorithm class was conducted applying anchored instruction. As results, an experimental group has shown improvements on problem solving compared to a control group.

  • PDF

On Solving the Fuzzy Goal Programming and Its Extension (불분명한 북표계확볍과 그 확장)

  • 정충영
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.11 no.2
    • /
    • pp.79-87
    • /
    • 1986
  • This paper illustrates a new method to solve the fuzzy goal programming (FGP) problem. It is proved that the FGP proposed by Narasimhan can be solved on the basis of linear programming(LP) model. Narasimhan formulated the FGP problem as a set of $S^{K}$LP problems, each containing 3K constraints, where K is the number of fuzzy goals/constraints. Whereas Hanna formulated the FGP problem as a single LP problem with only 2K constraints and 2K + 1 additional variables. This paper presents that the FGP problem can be transformed with easy into a single LP model with 2K constraints and only one additional variables. And we propose extended FGP :(1) FGP with weights associated with individual goals, (2) FGP with preemptive prioities. The extended FGP has a framework that is identical to that of conventional goal programming (GP), such that the extended FGP can be applied with fuzzy concept to the all areas where GP can be applied.d.

  • PDF