• Title/Summary/Keyword: Science Laboratory

Search Result 15,951, Processing Time 0.043 seconds

Evaluation of an Appropriate Replacement Cycle for Copper Antibacterial Film to Prevent Secondary Infection

  • Je, Min-A;Park, Heechul;Kim, Junseong;Lee, Eun Ju;Jung, Minju;Kim, Minji;Jeong, Mingyoung;Yun, Jiyun;Sin, Hayeon;Jin, Hyunwoo;Lee, Kyung Eun;Kim, Jungho
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.195-199
    • /
    • 2022
  • The use of copper antibacterial films as an effective infection prevention method is increasing owing to its ability to reduce the risk of pathogen transmission. In this study, we evaluated the bacterial contamination of the antibacterial copper membrane attached to a door handle at a university over time. Six mounting locations with high floating population were selected. In three sites, the door handles with the antibacterial film were exposed, while the remaining three were not attached with the antibacterial films. On days 7 and 14, isolated bacterial strains were inoculated in BHI broth and agar, respectively. Colony-forming units (CFU) were determined after incubation. Strain identification was performed using bacterial 16s rRNA PCR and sequencing. Results showed that the bacterial population on day 14 significantly increased from 6 × 109 CFU/mL (day 7) to 2 × 1010 CFU/mL. Furthermore, strain distribution was not different between the on and off the copper antibacterial film groups. In conclusion, although copper has an antibacterial activity, microbial contamination may occur with prolonged use.

Nucleocapsid Amino Acids 211 to 254, in Particular, Tetrad Glutamines, are Essential for the Interaction Between the Nucleocapsid and Membrane Proteins of SARS-Associated Coronavirus

  • Fang, Xiaonan;Ye, Lin-Bai;Zhang, Yijuan;Li, Baozong;Li, Shanshan;Kong, Lingbao;Wang, Yuhua;Zheng, Hong;Wang, Wei;Wu, Zhenghui
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.577-580
    • /
    • 2006
  • GST pull-down assays were used to characterize the SARS-CoV membrane (M) and nucleocapsid (N) interaction, and it was found that the amino acids 211-254 of N protein were essential for this interaction. When tetrad glutamines (Q) were replaced with glutamic acids (E) at positions of 240-243 of the N protein, the interaction was disrupted.