• Title/Summary/Keyword: Science Image

Search Result 10,029, Processing Time 0.041 seconds

A Multi-Stage Approach to Secure Digital Image Search over Public Cloud using Speeded-Up Robust Features (SURF) Algorithm

  • AL-Omari, Ahmad H.;Otair, Mohammed A.;Alzwahreh, Bayan N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.65-74
    • /
    • 2021
  • Digital image processing and retrieving have increasingly become very popular on the Internet and getting more attention from various multimedia fields. That results in additional privacy requirements placed on efficient image matching techniques in various applications. Hence, several searching methods have been developed when confidential images are used in image matching between pairs of security agencies, most of these search methods either limited by its cost or precision. This study proposes a secure and efficient method that preserves image privacy and confidentially between two communicating parties. To retrieve an image, feature vector is extracted from the given query image, and then the similarities with the stored database images features vector are calculated to retrieve the matched images based on an indexing scheme and matching strategy. We used a secure content-based image retrieval features detector algorithm called Speeded-Up Robust Features (SURF) algorithm over public cloud to extract the features and the Honey Encryption algorithm. The purpose of using the encrypted images database is to provide an accurate searching through encrypted documents without needing decryption. Progress in this area helps protect the privacy of sensitive data stored on the cloud. The experimental results (conducted on a well-known image-set) show that the performance of the proposed methodology achieved a noticeable enhancement level in terms of precision, recall, F-Measure, and execution time.

Medical Image Watermarking Based on Visual Secret Sharing and Cellular Automata Transform for Copyright Protection

  • Fan, Tzuo-Yau;Chao, Her-Chang;Chieu, Bin-Chang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6177-6200
    • /
    • 2018
  • In order to achieve the goal of protecting medical images, some existing watermark techniques for medical image protection mainly focus on improving the invisibility and robustness properties of the method, in order to prevent unnecessary medical disputes. This paper proposes a novel copyright method for medical image protection based on visual secret sharing (VSS) and cellular automata transform (CAT). This method uses the protected medical image feature as well as VSS and a watermark to produce the ownership share image (OSI). The OSI is used for medical image verification and must be registered to a certified authority. In the watermark extraction process, the suspected medical image is used to generate a master share image (MSI). The watermark can be extracted by combining the MSI and the OSI. Different from other traditional methods, the proposed method does not need to modify the medical image in order to protect the copyright of the image. Moreover, the registered OSI used to verify the ownership and its appearance display meaningful information, facilitating image management. Finally, the results of the final experiment can prove the effectiveness of our method.

Evaluation of Noise Power Spectrum Characteristics by Using Magnetic Resonance Imaging 3.0T (3.0T 자기공명영상을 이용한 잡음전력스펙트럼 특성 평가)

  • Min, Jung-Whan;Jeong, Hoi-Woun;Kim, Seung-Chul
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • This study aim of quantitative assessment of Noise Power Spectrum(NPS) and image characteristics of by acquired the optimal image for noise characteristics and quality assurance by using magnetic resonance imaging(MRI). MRI device was (MAGNETOM Vida 3.0T MRI; Siemense healthcare system; Germany) used and the head/neck shim MR receive coil were 20 channels coil and a diameter 200 mm hemisphere phantom. Frequency signal could be acquired the K-space trajectory image and white image for NPS. The T2 image highest quantitatively value for NPS finding of showed the best value of 0.026 based on the T2 frequency of 1.0 mm-1. The NPS acquired of showed that the T1 CE turbo image was 0.077, the T1 CE Conca2 turbo image was 0.056, T1 turbo image was 0.061, and the T1 Conca2 turbo image was 0.066. The assessment of NPS image characteristics of this study were to that could be used efficiently of the MRI and to present the quantitative evaluation methods and image noise characteristics of 3.0T MRI.

A Systematic Review on Concept-based Image Retrieval Research (체계적 분석 기법을 이용한 의미기반 이미지검색 분야 고찰에 관한 연구)

  • Chung, EunKyung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.4
    • /
    • pp.313-332
    • /
    • 2014
  • With the increased creation, distribution, and use of image in context of the development of digital technologies and internet, research endeavors have accumulated drastically. As two dominant aspects of image retrieval have been considered content-based and concept-based image retrieval, concept-based image retrieval has been focused in the field of Library and Information Science. This study aims to systematically review the accumulated research of image retrieval from the perspective of LIS field. In order to achieve the purpose of this study, two data sets were prepared: a total of 282 image retrieval research papers from Web of Science, and a total of 35 image retrieval research from DBpia in Kore for comparison. For data analysis, systematic review methodology was utilized with bibliographic analysis of individual research papers in the data sets. The findings of this study demonstrated that two sub-areas, image indexing and description and image needs and image behavior, were dominant. Among these sub-areas, the results indicated that there were emerging areas such as collective indexing, image retrieval in terms of multi-language and multi-culture environments, and affective indexing and use. For the user-centered image retrieval research, college and graduate students were found prominent user groups for research while specific user groups such as medical/health related users, artists, and museum users were found considerably. With the comparison with the distribution of sub-areas of image retrieval research in Korea, considerable similarities were found. The findings of this study expect to guide research directions and agenda for future.

Effects of Traditional Firms' Agility Obtained by Adopting Internet Business on Corporate Image and Customer Satisfaction

  • Yi, Jun-Sub
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.761-774
    • /
    • 2008
  • Agility is vital to real-time enterprises in comtemporary dynamic business environment. This study aims to investigate the relationships between traditional shipping and port logistics firms' customer agility obtained by adopting Internet business, and their corporate image and customer satisfaction. Using questionnaire data, factor analyses were used to figure out five major agility factors, corporate image factor, and customer satisfaction factor. The agility factors were then used to investigate how they improve the firms' corporate image and customer satisfaction. The results of the regression analyses show that agility factors significantly influence the firms' corporate image and customer satisfaction factors.

  • PDF

Wild Image Object Detection using a Pretrained Convolutional Neural Network

  • Park, Sejin;Moon, Young Shik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.366-371
    • /
    • 2014
  • This paper reports a machine learning approach for image object detection. Object detection and localization in a wild image, such as a STL-10 image dataset, is very difficult to implement using the traditional computer vision method. A convolutional neural network is a good approach for such wild image object detection. This paper presents an object detection application using a convolutional neural network with pretrained feature vector. This is a very simple and well organized hierarchical object abstraction model.

Color Image Segmentation by statistical approach (확률적 방법을 통한 컬러 영상 분할)

  • Gang Seon-Do;Yu Heon-U;Jang Dong-Sik
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1677-1683
    • /
    • 2006
  • Color image segmentation is useful for fast retrieval in large image database. For that purpose, new image segmentation technique based on the probability of pixel distribution in the image is proposed. Color image is first divided into R, G, and B channel images. Then, pixel distribution from each of channel image is extracted to select to which it is similar among the well known probabilistic distribution function-Weibull, Exponential, Beta, Gamma, Normal, and Uniform. We use sum of least square error to measure of the quality how well an image is fitted to distribution. That P.d.f has minimum score in relation to sum of square error is chosen. Next, each image is quantized into 4 gray levels by applying thresholds to the c.d.f of the selected distribution of each channel. Finally, three quantized images are combined into one color image to obtain final segmentation result. To show the validity of the proposed method, experiments on some images are performed.

  • PDF

Automatic Generalization of Image Transformation Processes Using a Genetic Algorithm

  • Masunaga, Shinya;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.101-106
    • /
    • 1997
  • A method is proposed to generalize the image transformation from an image to another one according to a pair of example images. When an original image and its target image are given, the unknown image transformation from the original image to the target one in automatically approximated by a sequence of several known image transformation filters by the method. The target image is assumed to be generated manually by using a drawing software. In this method, the order of image transformation filers is regarded as the chromosome of a virtual living thing and is evolved according to Genetic Algorithm. This method can be applied to automatic construction of expert systems for image processing.

  • PDF

Region Division for Large-scale Image Retrieval

  • Rao, Yunbo;Liu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5197-5218
    • /
    • 2019
  • Large-scale retrieval algorithm is problem for visual analyses applications, along its research track. In this paper, we propose a high-efficiency region division-based image retrieve approaches, which fuse low-level local color histogram feature and texture feature. A novel image region division is proposed to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, for optimizing our region division retrieval method, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed. Moreover, we propose an extended Canberra distance method for images similarity measure to increase the fault-tolerant ability of the whole large-scale image retrieval. Extensive experimental results on several benchmark image retrieval databases validate the superiority of the proposed approaches over many recently proposed color-histogram-based and texture-feature-based algorithms.

Segmentation of Millimeter-wave Radiometer Image via Classuncertainty and Region-homogeneity

  • Singh, Manoj Kumar;Tiwary, U.S.;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.862-864
    • /
    • 2003
  • Thresholding is a popular image segmentation method that converts a gray-level image into a binary image. The selection of optimum threshold has remained a challenge over decades. Many image segmentation techniques are developed using information about image in other space rather than the image space itself. Most of the technique based on histogram analysis information-theoretic approaches. In this paper, the criterion function for finding optimal threshold is developed using an intensity-based classuncertainty (a histogram-based property of an image) and region-homogeneity (an image morphology-based property). The theory of the optimum thresholding method is based on postulates that objects manifest themselves with fuzzy boundaries in any digital image acquired by an imaging device. The performance of the proposed method is illustrated on experimental data obtained by W-band millimeter-wave radiometer image under different noise level.

  • PDF