• 제목/요약/키워드: Schrodinger-type elliptic equation

검색결과 2건 처리시간 0.016초

MULTIPLICITY OF POSITIVE SOLUTIONS OF A SCHRÖDINGER-TYPE ELLIPTIC EQUATION

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • 제40권3호
    • /
    • pp.295-306
    • /
    • 2024
  • We investigate the existence of multiple positive solutions of the following elliptic equation with a Schrödinger-type term: $$\begin{cases}-{\Delta}u+V(x)u={\lambda}f(u){\quad} x{\in}{\Omega},\\{\qquad}{\qquad}{\quad}u=0, {\qquad}\;x{\in}\partial{\Omega},\end{cases}$$, where 0 ∈ Ω is a bounded domain in ℝN , N ≥ 1, with a smooth boundary ∂Ω, f ∈ C[0, ∞), V ∈ L(Ω) and λ is a positive parameter. In particular, when f(s) > 0 for 0 ≤ s < σ and f(s) < 0 for s > σ, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR A SCHRÖDINGER-TYPE SINGULAR FALLING ZERO PROBLEM

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • 제39권3호
    • /
    • pp.355-367
    • /
    • 2023
  • Extending [14], we establish the existence of multiple positive solutions for a Schrödinger-type singular elliptic equation: $$\{{-{\Delta}u+V(x)u={\lambda}{\frac{f(u)}{u^{\beta}}},\;x{\in}{\Omega}, \atop u=0,\;x{\in}{\partial}{\Omega},$$ where 0 ∈ Ω is a bounded domain in ℝN, N ≥ 1, with a smooth boundary ∂Ω, β ∈ [0, 1), f ∈ C[0, ∞), V : Ω → ℝ is a bounded function and λ is a positive parameter. In particular, when f(s) > 0 on [0, σ) and f(s) < 0 for s > σ, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.