• Title/Summary/Keyword: Schottky conduction

Search Result 67, Processing Time 0.024 seconds

A Study on high efficiency Bridgeless PFC Converter applied SiC SBD (SiC SBD 적용한 고효율 Bridgeless PFC 컨버터에 대한 연구)

  • Jeon, Joon-Hyeok;Kim, Hyung-Sik;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.449-455
    • /
    • 2019
  • This paper proposes a flyback diode of bridgeless PFC converter as SiC SBD (Schottky Barrier Diode) to achieve high efficiency. In addition, through the explanation of the operation principle of the bridgeless PFC converter, the conduction section of the freewheel diode is shown in the bridgeless PFC converter to verify the contribution of system loss due to the loss of the freewheel diode. The advantages of the SiC SBD device's physical properties and the reverse recovery characteristics are explained, and the efficiency is measured by measuring the turn-on and turn-off losses. The loss was calculated. The simulation results were calculated in consideration of device characteristics and verified through the waveform analysis and comparison of the actual system. In order to consider the device characteristics, the simulation was conducted using the thermal module of PSIM. As a result of the prototype test, the turn-on loss was 0.608W and the turn-off loss was 21.62W, resulting in the total switching loss of 22.228W. The comparison of the two results proved the validity of the experimental method. In addition, a high efficiency of 94.58% is achieved.

Defects and Grain Boundary Properties of ZnO with Mn3O4 Contents (Mn3O4 함량에 따른 ZnO의 결함과 입계 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.962-968
    • /
    • 2011
  • In this study, we investigated the effects of Mn dopant (0.1~3.0 at% $Mn_3O_4$ sintered at 1000$^{\circ}C$ for 1 h in air) on the bulk trap (i.e. defect) and grain boundary properties of ZnO, ZM(0.1~3.0) using admittance spectroscopy (AS), and impedance-modulus spectroscopy (IS & MS). As a result, three kinds of defect were found below the conduction band edge of ZnO as 0.09~0.14 eV (attractive coulombic center), 0.22~25 eV ($Zn^{{\cdot}{\cdot}}_i$), and 0.32~0.33 eV ($V^{\cdot}_o$). The oxygen vacancy increased with Mn doping. In ZM, an electrically single grain boundary as double Schottky barrier was formed with 0.82~1.0 eV of activation energies by IS & MS. We also find out that the barriers of grain boundary of Mn-doped ZnO (${\alpha}$-factor=0.13) were more stabilized and homogenized with temperature compared to pure ZnO.

Characteristic Analysis of Poly(4-Vinyl Phenol) Based Organic Memory Device Using CdSe/ZnS Core/Shell Qunatum Dots

  • Kim, Jin-U;Kim, Yeong-Chan;Eom, Se-Won;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.289.1-289.1
    • /
    • 2014
  • In this study, we made a organic thin film device in MIS(Metal-Insulator-Semiconductor) structure by using PVP (Poly vinyl phenol) as a insulating layer, and CdSe/ZnS nano particles which have a core/shell structure inside. We dissolved PVP and PMF in PGMEA, organic solvent, then formed a thin film through a spin coating. After that, it was cross-linked by annealing for 1 hour in a vacuum oven at $185^{\circ}C$. We operated FTIR measurement to check this, and discovered the amount of absorption reduced in the wave-length region near 3400 cm-1, so could observe decrease of -OH. Boonton7200 was used to measure a C-V relationship to confirm a properties of the nano particles, and as a result, the width of the memory window increased when device including nano particles. Additionally, we used HP4145B in order to make sure the electrical characteristics of the organic thin film device and analyzed a conduction mechanism of the device by measuring I-V relationship. When the voltage was low, FNT occurred chiefly, but as the voltage increased, Schottky Emission occurred mainly. We synthesized CdSe/ZnS and to confirm this, took a picture of Si substrate including nano particles with SEM. Spherical quantum dots were properly made. Due to this study, we realized there is high possibility of application of next generation memory device using organic thin film device and nano particles, and we expect more researches about this issue would be done.

  • PDF

UV Photo Response Driven by Pd Nano Particles on LaAlO3/SrTiO3 Using Ambient Control Kelvin Probe Force Microscopy

  • Kim, Haeri;Chan, Ngai Yui;Dai, Jiyan;Kim, Dong-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.207.1-207.1
    • /
    • 2014
  • High-mobility and two dimensional conduction at the interface between two band insulators, LaAlO3 (LAO) and SrTiO3 (STO), have attracted considerable research interest for both applications and fundamental understanding. Several groups have reported the photoconductivity of LAO/STO, which give us lots of potential development of optoelectronic applications using the oxide interface. Recently, a giant photo response of Pd nano particles/LAO/STO is observed in UV illumination compared with LAO/STO sample. These phenomena have been suggested that the correlation between the interface and the surface states significantly affect local charge modification and resulting electrical transport. Water and gas adsorption/desorption can alter the band alignment and surface workfunction. Therefore, characterizing and manipulating the electric charges in these materials (electrons and ions) are crucial for investigating the physics of metal oxide. Proposed mechanism do not well explain the experimental data in various ambient and there has been no quantitative work to confirm these mechanism. Here, we have investigated UV photo response in various ambient by performing transport and Kelvin probe force microscopy measurements simultaneously. We found that Pd nano particles on LAO can form Schottky contact, it cause interface carrier density and characteristics of persistence photo conductance depending on gas environment. Our studies will help to improve our understanding on the intriguing physical properties providing an important role in many enhanced light sensing and gas sensing applications as a catalytic material in different kinds of metal oxide systems.

  • PDF

Effects of PbO on the Repassivation Kinetics of Alloy 690

  • Ahn, SeJin;Kwon, HyukSang;Lee, JaeHun;Park, YunWon;Kim, UhChul
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.131-139
    • /
    • 2004
  • Effects of PbO on the repassivation kinetics and characteristics of passive film of Alloy 690 were examined to elucidate the influences of PbO on the SCC resistance of that alloy. The repassivation kinetics of the alloy was analyzed in terms of the current density flowing from the scratch, i(t), as a function of the charge density that has flowed from the scratch, q(t). Repassivation on the scratched surface of the alloy occurred in two kinetically different processes; passive film initially nucleated and grew according to the place exchange model in which log i(t) is linearly proportional to q(t), and then grew according to the high field ion conduction model in which log i(t) is linearly proportional to 1/q(t) with a slope of cBV. The cBV is found to be a parameter representing repassivation rate and hence SCC susceptibility of the alloy. The lower the value of cBV, the faster the repassivation rate and the higher the SCC resistance of an alloy. Addition of PbO to pH 4 and 10 solutions increased the value of cBV of alloy 690, reflecting slower repassivation rate than without PbO. The change in the value of cBV was grater in pH 10 than in pH 4. The increase in SCC susceptibility of alloy 690 with the addition of PbO to solution was presumably due to the Cr-depletion in the outer parts of passive film of the alloy with an incorporation of Pb compounds in the film, which was revealed by Mott-Schottky, AES and XPS analyses.

The Characteristics of Ti-O Buffer Layered Ta/Ta2O5Capacitors on the Al2O3 substrate (Al2O3 기판위에 형성된 Ti-O 완충층을 가진 Ta/Ta2O5커패시티의 특성)

  • 김현주;송재성;김인성;김상수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.807-811
    • /
    • 2003
  • We investigated the electrical characterisitics of T $a_2$ $O_{5}$ (tantalum pentoxide) film and Ti-O/T $a_2$ $O_{5}$ film deposited on $Al_2$ $O_3$based substrate. Ta (tantalum) electrode and $Al_2$ $O_3$ substrate was used for the purpose of simplifying the manufacturing process in IPD's (integrated passive devices). Dielectric materials (T $a_2$ $O_{5}$ and Ti-O/T $a_2$ $O_{5}$ films) deposited on Ta/Ti/A $l_2$ $O_3$ were annealed at 700 $^{\circ}C$ for 60 sec. in vacuum. The XRD results showed that as-deposited T $a_2$ $O_{5}$ film possessed amorphous structure, which was transformed to crystallines by rapid thermal heat treatment. We compared the lnJ- $E^{{\frac}{1}{2}}$, C-V, C-F of both as-deposited and annealed dielectric thin films deposited on Ta bottom electrode. From this results, we concluded that the leakage current could be reduced by introducing Ti-O buffer layer and conduction mechanisms of T $a_2$ $O_{5}$ and Ti-O/T $a_2$ $O_{5}$ could be interpreted appropriately by Schottky emission effect.

Electrical properties of $C_{22}$-Quinolium(TCNQ) LB films depending on a type of applied voltage and temperature (인가 전압 형태 및 온도에 따른 $C_{22}$-Quinolium(TCNQ) LB막의 전기적 특성)

  • Song, Il-Seok;Yoo, Deok-Son;Kim, Young-Kwan;Kim, Tae-Wan;Kang, Dou-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1193-1196
    • /
    • 1993
  • Electrical properties of $C_{22}$-Quinolium(TCNQ) Langmuir-Blodgett(LB) films are reported depending on a type of applied voltage on a type of applied voltage and temperature. A conductivity was identified to be anisotropic with a ratio of ${\sigma}||/{\sigma}{\bot}{\simeq}10^7$ at room temperature. The I-V characteristics along the film surface direction show an ohmic behavior up to a few hundred volts. But the I-V characteristics in the vertical direction display an ohmic behavior for low-electric field, and a nonohmic behavior for high-electric field. This nonohmic behavior has already been interpreted as a conduction mechanism of space-charge limited current and Schottky effect near the electric-field strengh of $10^6$ V/cm. When the electric field exceeds further, there is anormalous phenomia similiar to breakdown. From the study of I-V characteristics with the application of step or pulse voltage, we have found that the breakdown voltage shifts to higher one as the step or pulse interval becomes shorter. These results indicate that the breakdown is due to both electrical and thermal effect. To see the infulence of temperature, current was measured as function of temperature with several bias voltages, which are lower than that of breakdown. It shows that the current increases about 3 orders of magnitude near $60{\sim}70^{circ}C$, and remains constant for a while up to $140^{\circ}C$ and then suddenly drops. Arahidic acid was used to cmpare with $C_{22}$-Quinolium(TCNQ) LB films.

  • PDF