• 제목/요약/키워드: School division

Search Result 12,244, Processing Time 0.048 seconds

Two Case Reports of Pneumonia in Elderly Patients That Was Improved by Traditional Korean Medicine Treatment (노인성 폐렴 한방 치험 2례)

  • Bhang, Yeon-hee;Baek, Hyun-jung;Kim, Jae-hyo;Kim, Sang-jin;Kim, Kwan-il;Lee, Beom-joon;Jung, Sung-ki;Jung, Hee-jae
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.2
    • /
    • pp.352-360
    • /
    • 2016
  • Objective: This study reports on traditional Korean medicine therapy used for pneumonia among elderly patients.Method: Two patients diagnosed with pneumonia were treated with herbal medicine and acupuncture, as well as cupping along the back. We checked chest X-rays, coughing and sputum on the visual analogue scale (VAS), and lab evaluations in order to evaluate the effectiveness of the treatment.Results: Following treatment with traditional Korean medicine therapy, VAS scores for coughing and sputum decreased and the chest X-rays and inflammation markers improved.Conclusion: Traditional Korean medicine therapy treatment appears to be effective for treating pneumonia in elderly patients.

Evaluation and treatment of facial feminization surgery: part I. forehead, orbits, eyebrows, eyes, and nose

  • Dang, Brian N.;Hu, Allison C.;Bertrand, Anthony A.;Chan, Candace H.;Jain, Nirbhay S.;Pfaff, Miles J.;Lee, James C.;Lee, Justine C.
    • Archives of Plastic Surgery
    • /
    • v.48 no.5
    • /
    • pp.503-510
    • /
    • 2021
  • Facial feminization surgery (FFS) incorporates aesthetic and craniofacial surgical principles and techniques to feminize masculine facial features and facilitate gender transitioning. A detailed understanding of the defining male and female facial characteristics is essential for success. In this first part of a two-part series, we discuss key aspects of the general preoperative consultation that should be considered when evaluating the prospective facial feminization patient. Assessment of the forehead, orbits, hairline, eyebrows, eyes, and nose and the associated procedures, including scalp advancement, supraorbital rim reduction, setback of the anterior table of the frontal sinus, rhinoplasty, and soft tissue modifications of the upper and midface are discussed. In the second part of this series, bony manipulation of the midface, mandible, and chin, as well as soft tissue modification of the nasolabial complex and chondrolaryngoplasty are discussed. Finally, a review of the literature on patient-reported outcomes in this population following FFS is provided.

Detailed Mode of Action of Arabinan-Debranching α-ʟ-Arabinofuranosidase GH51 from Bacillus velezensis

  • Oh, Gyo Won;Kang, Yewon;Choi, Chang-Yun;Kang, So-Yeong;Kang, Jung-Hyun;Lee, Min-Jae;Han, Nam Soo;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • The gene encoding an ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ (BvAF) GH51 from Bacillus velezensis FZB42 was cloned and expressed in Escherichia coli. The corresponding open reading frame consists of 1,491 nucleotides which encode 496 amino acids with the molecular mass of 56.9 kDa. BvAF showed the highest activity against sugar beet (branched) arabinan in 50 mM sodium acetate buffer (pH 6.0) at $45^{\circ}C$. However, it could hardly hydrolyze debranched arabinan and arabinoxylans. The time-course hydrolyses of branched arabinan and arabinooligosaccharides (AOS) revealed that BvAF is a unique exo-hydrolase producing exclusively ${\text\tiny{L}}-arabinose$. BvAF could cleave ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-{\text\tiny{L}}-arabinofuranosidic$ linkages of the branched substrates to produce the debranched forms of arabinan and AOS. Although the excessive amount of BvAF could liberate ${\text\tiny{L}}-arabinose$ from linear AOS, it was extremely lower than that on branched AOS. In conclusion, BvAF is the arabinan-specific exo-acting ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ possessing high debranching activity towards ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-linked$ branches of arabinan, which can facilitate the successive degradation of arabinan by $endo-{\alpha}-(1,5)-{\text\tiny{L}}-arabinanase$.

Failure of Ciprofloxacin Therapy in the Treatment of Community-Acquired Acute Pyelonephritis caused by In-Vitro Susceptible Escherichia coli Strain Producing CTX-Type Extended-Spectrum β-Lactamase

  • Seok, Hyeri;Cha, Min Kyeong;Kang, Cheol-In;Cho, Sun Young;Kim, So Hyun;Ha, Young Eun;Chung, Doo Ryeon;Peck, Kyong Ran;Song, Jae-Hoon
    • Infection and chemotherapy
    • /
    • v.50 no.4
    • /
    • pp.357-361
    • /
    • 2018
  • While carbapenems are the drug of choice to treat extended-spectrum-${\beta}$-lactamase (ESBL)-producing strains, some alternative carbapenem-sparing regimens are suggested for antibiotic stewardship. We experienced a case of ciprofloxacin treatment failure for acute pyelonephritis caused by an apparently susceptible Escherichia coli. A 71-year-old woman presented the emergency department with fever for 7 days and bilateral flank pain for 2 days. The laboratory results and abdominopelvic computed tomography finding were compatible with acute pyelonephritis. During 3-day ciprofloxacin therapy, the patient remained febrile with persistent bacteremia. After the change in antibiotics to ertapenem, the patient's clinical course started to improve. ESBL-producing E. coli isolates were identified in all three consecutive blood samples. Pulsed-field gel electrophoresis (PFGE) patterns, serotypes, and sequence types showed the three isolates were derived from the identical strain. The isolates produced CTX-M-14 type ESBL belonging to the ST69 clonal group. Despite in vitro susceptibility, the failure was attributed to a gyrA point mutation encoding Ser83Leu within quinolone resistance-determining regions. This case suggests that ciprofloxacin should be used cautiously in the treatment of serious infections caused by ciprofloxacin-susceptible, ESBL-producing E. coli, even in acute pyelonephritis because in-vitro susceptibility tests could fail to detect certain genetic mutations.