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Introduction

Electro-Rheological (ER) materials are concentrated suspension of micron—
sized particles in a continuous fluid phase. In the presence of strong electric
field, these particles become polarized. The interactions of these polarized
particles with one another and with the suspending medium give rise to
qualitative changes in the flow.

ER fluid’s fast response and low power requirement provide the possibility
of rapid response coupling between mechanical devices and electronic control.
Some useful applications are ER engine mounts, shock absorbers, ER clutches,
and other viscous damping devices. Since some devices have planar or
concentric cylindrical electrodes, the analysis of shear {(Couette) and pressure-
driven (Poiseuille) flows in channel geometry is important.

Under steady flow conditions, the viscosity data for ER fluids are often
fitted to an empirical equation for Bingham visco-plastic fluid of the form,

0= 77y = 0,4+ 7.y (for 6> o,) (1
where y = 0 for ¢ ¢ 0,. Here o is the shear stress, 7 is the viscosity
function, 7 is the shear rate, o, is called the dynamic yield stress, and 7

is the high shear limiting viscosity, also called the plastic viscosity.

The Bingham model is valuable for describing steady flow motion of an ER
fluid from macroscopic point of view, but the model is highly oversimplified.
The phenomenological constitutive theories refered to eq. (1) assume that an
ER fluid can be modeled as a homogeneous, single-phase fluid.

However, ER fluid is non-homogeneous fluid with solid particles and
suspending medium. ER fluids have been reported to possess essentially
instantaneous response but this characteristic is not reflected in Bingham
model.

Another approach to describe the features of the microscopic phenomena of
an ER fluid has been studied (D.]J. Klingenberg et. al, 1989, 1998). These
models are associated with tracking the time-evolved motion of individual
particles under the action of hydrodynamic forces and electrically induced
polarization forces in the basic level. These particle level models consider
suspensions consisting of hard, neutrally buoyant, dispersed spheres immersed
in a Newtonian fluid. But the local fluid motion for this model system is
governed by the Stokes’s equations and the formation of chain-like particulate



82 #FRTe olgd ¥ A6d AE 200249

structures on a suspension of randomly dispersed particles has been
simulated. The particle motion is driven by point-dipole forces and resisted
by Stokes drag, ignoring all hydrodynamic interactions between the spheres
and the fluid.

In this study, to overcome these drawbacks, hydrodynamic interactions
between the spheres are accurately accounted for using the Navier-Stokes
equations, and the multi-body electrostatic interaction is solved simultaneously
at the particle-dipole level for the analysis of an ER fluid. The present DNS
method provides not only the macroscopic behavior but also the microscopic
structure of an ER fluid, so that we can explain the ER fluid mechanics more
clearly such as the accurate measure of the effective viscosity.

Governing Equations

This study shows the flow of an ER fluid in the 2D electrode periodic
channel.

Hydrodynamic interactions between the spheres are accurately calculated by
using the Navier-Stokes equations. The governing equations for unsteady,
laminar, incompressible flow are,

D
D
The multi~body electrostatic interaction is solved at the particle-dipole level
(Klingenberg et. al, 1989, 1998). The electrostatic polarization force between
two dipoles is,

vru=09, (2)
VT (o=—pl+7)

F{(R;;, 0.5 = Fo(—‘lgl_)4[[3c0520,;,'—1]e,+ sin20; ; e,) 3)
FO = '136—7T€0€cd2/92E§ , (4)

B=(a—1)/(a+2), a=¢,le,
where &, &., €, and d are the permittivity of vacuum, the dielectric
constant of the base fluid, the dielectric constant of the particle, and the
diameter of the particle, respectively, R and & are position vectors, and E
is the electric field.

The electrostatic forces are the sum of electrostatic interactions with the
particles and electrostatic interactions with the electrode and repulsive forces
between the particles.

SUF) =2 F¢+ 2F yu+ R, ®)
Then, the particle motion is determined by the fluid and electrostatic forces.

du
M—*=F, +E,

= ;naij(uh),- + ignb,-j(ph)j + QU F%)
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This is the combined formulation which does not necessarily calculate the
fluid force on the surface of the particles explicitly.

To solve these equations finite element method (FEM) is used which
consists of a four-step fractional-step method used with P2P1 mixed finite
element and the second order accurate fully implicit Crank-Nicolson time-
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marching scheme (Choi, 2000).

Results and Discussions .

We have simulated the 2-dimensional channel flow of an ER fluid. The
geometry and boundary conditions of the flow field are shown in Fig. 1. The
uniform pressure gradient is applied in the flow field and the electric potential
is applied on the electrode wall. The periodic condition is used for the
computational domain.
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Fig. 1 Computational domain and flow conditions.

To verify the FEM code, equilibrium height of a particle in the Poiseuille
flow is calculated. When the pressure gradient is applied, the particle begins
to slide and to roll in the bottom of the channel. After a few seconds, the
particle begins to be fluidized by the lift force. When the lift force makes a
counterbalance for the gravity force, the particle drifts at a constant height
from the bottom. This simulation result has the height 1.2 of the particle
diameter at the Reynolds number 16.2. This result is in good agreement with
the previous study (Patankar et. al, 2001).

For an ER fluid flow simulation, the dielectric constants, &= 8.8542X10"2F/m,
e.=1.3, €,=23.4 are chosen. The channel is 1mm height, where the

diameter of a particle is d=0.025mm. The viscosity of the suspending medium
is 100 mPas.

(a) (b)
Fig. 2 Snapshots of particles in an ER fluid when electric field and pressure
gradient are applied. (a) 10% volume fraction, (b) 30% volume fraction.

At first, particles have random positions without an electric field When
electric potential is applied on the electrode, the particles have the formation
of chain-like structures in the fluid medium. The images of these structures
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are seen in Fig. 2. This figure describes the formation of the chains of ER
particles, and how the particles resist the fluid flow and increase the fluid
viscosity. The fluid of 10% volume fraction has short chains. However, as the
volume fraction becomes higher, the particles form longer chains and columns
through the electrodes. The images of the chains describe that why the
volume fraction is an important factor to resist the fluid flow, as shown in
Fig. 3.

The intensity of the electric field has an influence on the formation of the
chains, which results in fluid velocity change. In Fig. 3, the relation of the
electric field and the velocity of the ER fluid is shown. This is the same
trend as given by previous experiments (Jdayil & Brunn, 1996). The flat
pattern of the velocity in the center of the channel is significant when the
electric field is large. '
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Fig. 3 Velocity profiles across the channel: (a) for various electric fields (volume
fraction = 30%), (b) for various volume fraction fluids (electric field E=2.5).

Conclusions

The flow of an ER fluid in the 2D electrode periodic channel is studied by
using FEM. The hydrodynamic interactions between the spheres and fluid are
calculated using the Navier-Stokes equations, and the multi-body electrostatic
interaction is solved at the particle-dipole level.

The motion of the particles in the ER fluid is described and the
mechanisms of the flow resistence and the viscosity increase are explained.
The ER effects have been studied by considering the electric field and
volume fraction. These parameters have an influence on the formation of the
chains resulting in changes of the fluid velocity and the effective viscosity.

References
H.G. Choi, Comput. Methods Appl. Mech. Engrg. vol. 190 (2000), 1367-1378.
H.G. Choi, D.D. Joseph, J. Fluid Mech. vol. 438. (2001), 101-128.
B.A. Jdayil, P.O. Brunn, J. Non-Newtonian Fluid Mech. vol. 63 (1996), 45-61.
D.]. Klingenberg, F.V. Swol, C.F. Zukoski, J. Chem. Physics vol. 91 (1989), 7888.
D.]. Klingenberg, F.V. Swol, C.F. Zukoski, J. Chem. Physics vol. 91 (1989), 6160.
D.J. Klingenberg, J. non-Newtonian Fluid Mech. vol. 81 (1998), 83-104.
N. Patankar, Y. Huang, T. Ko, D.D. Joseph, J. Fluid Mech. vol. 438 (2001), 67-100.



