• Title/Summary/Keyword: School connection

Search Result 1,732, Processing Time 0.028 seconds

Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis

  • Kim, Kun-Soo;Han, Oneil;Gombosuren, Munkhtulga;Kim, Sang-Hyo
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.53-67
    • /
    • 2019
  • This study presents finite element analysis (FEA) on a Y-type perfobond rib shear connection using Abaqus software. The performance of a shear connection is evaluated by conducting a push-out test. However, in practice, it is inefficient to verify the performance by conducting a push-out test with regard to all design variables pertaining to a shear connector. To overcome this problem, FEA is conducted on various shear connectors to accurately estimate the shear strength of the Y-type perfobond rib shear connection. Previous push-out test results for 14 typical push-out test specimens and those obtained through FEA are compared to analyze the shear behavior including consideration of the design variables. The results show that the developed finite element model successfully reflects the effects of changes in the design variables. In addition, using the developed FEA model, the shear resistance of a stubby Y-type perfobond rib shear connector is evaluated based on the concrete strength and transverse rebar size variables. Then, the existing shear resistance formula is upgraded based on the FEA results.

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.

Influence of the connection design and titanium grades of the implant complex on resistance under static loading

  • Park, Su-Jung;Lee, Suk-Won;Leesungbok, Richard;Ahn, Su-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.388-395
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the resistance to deformation under static overloading by measuring yield and fracture strength, and to analyze the failure characteristics of implant assemblies made of different titanium grades and connections. MATERIALS AND METHODS. Six groups of implant assemblies were fabricated according to ISO 14801 (n=10). These consisted of the combinations of 3 platform connections (external, internal, and morse tapered) and 2 materials (titanium grade 2 and titanium grade 4). Yield strength and fracture strength were evaluated with a computer-controlled Universal Testing Machine, and failed implant assemblies were classified and analyzed by optical microscopy. The data were analyzed using the One-way analysis of variance (ANOVA) and Student's t-test with the level of significance at P=.05. RESULTS. The group $IT4_S$ had the significantly highest values and group IT2 the lowest, for both yield strength and fracture strength. Groups $IT4_N$ and ET4 had similar yield and fracture strengths despite having different connection designs. Group MT2 and group IT2 had significant differences in yield and fracture strength although they were made by the same material as titanium grade 2. The implant system of the similar fixture-abutment interfaces and the same materials showed the similar characteristics of deformation. CONCLUSION. A longer internal connection and titanium grade 4 of the implant system is advantageous for static overloading condition. However, it is not only the connection design that affects the stability. The strength of the titanium grade as material is also important since it affects the implant stability. When using the implant system made of titanium grade 2, a larger diameter fixture should be selected in order to provide enough strength to withstand overloading.

Experimental study on a new type of assembly bolted end-plate connection

  • Li, Shufeng;Li, Qingning;Jiang, Haotian;Zhang, Hao;Yan, Lei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.463-471
    • /
    • 2018
  • The bolted end-plate beam-column connections have been widely used in steel structure and composite structure because of its excellent seismic performance. In this paper, the end-plate bolted connection is applied in the concrete structure, A new-type of fabricated beam-column connections with end-plates is presented, and steel plate hoop is used to replace stirrups in the node core area. To study the seismic behavior of the joint, seven specimens are tested by pseudo-static test. The experimental results show that the new type of assembly node has good ductility and energy dissipation capacity. Besides, under the restraint effect of the high-strength stirrup, the width of the web crack is effectively controlled. In addition, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.

Test of extended thick-walled through-diaphragm connection to thick-walled CFT column

  • Qin, Ying;Chen, Zhihua;Bai, Jingjing;Li, Zilin
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • The strength and stiffness of the steel beams to concrete-filled tubular columns connections are significantly reduced if the thick-walled components are used. However, the thick-walled tubes used for columns can largely reduce the demand for space and increase the strength-to-weight ratio. This paper describes the cyclic performance of extended through-diaphragm connections between steel beams and thick-walled concrete-filled tubular columns improved with fillets around the diaphragm corners. Test on one full-scale connection was conducted to assess the seismic behavior of the connection in terms of strength, stiffness, ductility, deformation, energy dissipation, and strain distribution. It is shown that the fillets and extended through-diaphragm can alleviate the stress concentration in the connection and thus improve the seismic performance. The test results demonstrate that the through-diaphragm connections with thick-walled concrete-filled tubular columns can offer sufficient energy dissipation capacity and ductility appropriate for its potential application in seismic design.

The Elementary School Teachers' Understandings about the Characteristics of Currents according to the Connection Methods of Batteries in Simple Electric Circuits (전지의 연결방법에 따른 전류의 특성에 대한 초등교사들의 이해도)

  • Hyun, Dong-Geul;Shin, Ae-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.2
    • /
    • pp.335-351
    • /
    • 2014
  • The 96 elementary school teachers' the degrees of understandings about the characteristics of the currents according to the connection methods of batteries in simple electric circuits were investigated. In this study, the concepts on the characteristics of currents according to the connection methods of batteries were divided 'the learned concepts' and 'the differentiated concepts'. The characteristics of the currents in the region of the larger resistance of load than the internal resistance of a battery were called the learned concepts, they are taught in the science curriculum. While the characteristics of the currents in the region of the smaller resistance of load than the internal resistance of a battery were called the differentiated concepts, they are not exposed clearly in the science curriculum. The results obtained in this study are as follows: The average score related to the learned concepts was relatively high, while the degree of the teachers' cognitions of the internal resistance of a battery and the resistance of wires were low. Also the average score related to the differentiated concepts was very low because it seems so new to the elementary school teachers. It strongly suggests that the elementary school teachers did not understand meaningfully the characteristics of the currents related to the connections of batteries on the ground of the cognitions of the internal resistances of batteries and the resistances of loads in simple electric circuits. Hence, they might experience difficulties due to the problems occurred in relation to the connections of batteries in the elementary school science lessons.

Experimental investigation of novel pre-tightened teeth connection technique for composite tube

  • Li, Fei;Zhao, Qilin;Chen, Haosen;Xu, Longxing
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • A new composite tube connection method called the pre-tightened teeth connection technique is proposed to improve the composite tube connection efficiency. This paper first introduces the manufacturing process of the proposed technique. It then outlines how the mechanical properties of this technology were tested using four test groups. The factors that influence the load-bearing capacity and damage model of the connection were analyzed, and finally, the transfer load mechanism was investigated. The following conclusions can be obtained from the research results. (1) The new technique improves the compressive connection efficiency by a maximum of 79%, with the efficiency exceeding that of adhesive connections of the same thickness. (2) Changing the depth of teeth results in two types of damage: local compressive damage and shear damage. The bearing capacity can be improved by increasing the depth, length, and number of teeth as well as the pre-tightening force. (3) The capacity of the technique to transfer high loads is a result of both the relatively high interlaminar shear strength of the pultruded composite and the interlaminar shear strength increase provided by the pre-tightening force. The proposed technique shows favorable mechanical properties, and therefore, it can be extensively applied in the engineering field.

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.

Experimental study on seismic performance of concrete filled tubular square column-to-beam connections with combined cross diaphragm

  • Choi, Sung-Mo;Yun, Yeo-Sang;Kim, Jin-Ho
    • Steel and Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.303-317
    • /
    • 2006
  • The connection with combined cross diaphragm is developed for the connection of square CFT column and steel beam and proposed to be used for the frame with asymmetric span length. The structural characteristics of this connection lie in the penetration of the beam flange in the direction of major axis through the column for the smooth flow of stress. The purpose of this study is to analyze the dynamic behavior and stress flow of suggested connection and to evaluate the resistance to shock of connection. Four T-type CFT column-to-beam specimens; two with combined cross diaphragm and the others with interior and through diaphragms, the existing connection types, were made for cyclic load test guided by the load program of ANSI/AISC SSPEC 2002. The results show that the proposed connection is more efficient than existing ones in terms of strength, stress flow and energy absorption and satisfies the seismic performance required in the region of weak/moderate earthquakes.

Experimental study of a pretensioned connection for modular buildings

  • Yu, Yujie;Chen, Zhihua;Chen, Aoyi
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.217-232
    • /
    • 2019
  • Modular steel buildings consist of prefabricated room-sized structural units that are manufactured offsite and installed onsite. The inter-module connections must fulfill the assembly construction requirements and soundly transfer the external loads. This work proposes an innovative assembled connection suitable for modular buildings with concrete-filled steel tube columns. The connection uses pretensioned strands and plugin bars to vertically connect the adjacent modular columns. The moment-transferring performance of this inter-module connection was studied through monotonic and cyclic loading tests. The results showed that because of the assembly construction, the connected sections were separated under lateral bending, and the prestressed inter-module connection performed as a weak semirigid connection. The moment strength at the early loading stage originated primarily from the contact bonding mechanism with the infilled concrete, and the postyield strength depended mainly on the tensioned strands. The connection displayed a self-centering-like behavior that the induced deformation was reversed during unloading. The energy dissipation originated primarily from frictional slipping of the plugin bars and steel strands. The moment transferring ability was closely related to the section dimension and the arrangements of the plugin bars and steel strands. A simplified strength calculation and evaluation method was also proposed, and the effectiveness was validated with the test data.