• Title/Summary/Keyword: School buildings

Search Result 1,661, Processing Time 0.029 seconds

Analysis of three dimensional equivalent static wind loads of symmetric high-rise buildings based on wind tunnel tests

  • Liang, Shuguo;Zou, Lianghao;Wang, Dahai;Huang, Guoqing
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.565-583
    • /
    • 2014
  • Using synchronous surface pressures from the wind tunnel test, the three dimensional wind load models of high-rise buildings are established. Furthermore, the internal force responses of symmetric high-rise buildings in along-wind, across-wind and torsional directions are evaluated based on mode acceleration method, which expresses the restoring force as the summation of quasi-static force and inertia force components. Accordingly the calculation methods of equivalent static wind loads, in which the contributions of the higher modes can be considered, of symmetric high-rise buildings in along-wind, across-wind and torsional directions are deduced based on internal forces equivalence. Finally the equivalent static wind loads of an actual symmetric high-rise building are obtained by this method, and compared with the along-wind equivalent static wind loads obtained by China National Standard.

A design method for multi-degree-of-freedom aeroelastic model of super tall buildings

  • Wang, Lei;Zhu, Yong-jie;Wang, Ze-kang;Fan, Yu-hui
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.219-225
    • /
    • 2021
  • Wind tunnel test models for super tall buildings mainly include synchronized pressure models, high-frequency force balance models, forced vibration models and aeroelastic models. Aeroelastic models, especially MDOF aeroelastic models, are relatively accurate, and designing MDOF model is an important step in aero-model wind tunnel tests. In this paper, the authors propose a simple and accurate design method for MDOF model. The purpose of this paper is to make it easier to design MDOF models without unnecessary experimentation, which is of great significance for the use of the aero-model for tall buildings.

Analysis of Seismic Performance Characteristics for School Buildings on the Bracing Configuration of Steel Frame System Reinforcement (철골 시스템보강의 가새 형태에 따른 학교건축물의 내진성능특성 분석)

  • Kim, Ho-Soo;Kim, So-Yeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.59-69
    • /
    • 2023
  • Recently, the occurrence frequency of earthquake has increased in Korea, and the interests for seismic reinforcement of existing school buildings have been raised. To this end, the seismic performance evaluations for school buildings that did not accomplish the seismic design are required. In particular, this study checks the eigenvalue analysis, pushover curves, maximum base shears, performance points and story drift ratios, and then analyzes the seismic performance characteristics according to bracing configuration of steel frame system reinforcement. Also, this study presents the practical field application methods through the comparison of analysis results for the seismic performance characteristics.

Evaluation of the Heating and Cooling Systems in School Buildings (학교건물 냉난방설비시스템의 실태조사)

  • AHN, Chul-Lin;KIM, Dong-Gyue;KUM, Jong-Soo;PARK, Jong-Un;PARK, Hee-Ouk;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.1
    • /
    • pp.18-25
    • /
    • 2005
  • We have researched 10,811 schools to evaluate the characteristics of school buildings and the conditions of heating and cooling systems at the elementary, middle and high school levels. Air conditioning systems in school buildings are related to school scale, and 35% of the researched schools have less than 10 air conditioned classrooms among all of the schools in Korea. The LOADSYS is used to grasp the characteristics of school buildings heating and cooling load. From the results of this work, the heating load differs by nearly 24% between Seoul and Busan, but other than that there are not so many serious regional differences. Almost 85.4% of the classrooms are equipped with heating facilities and 6.9% of them are equipped with heating and cooling facilities. As a result, it is necessary to make improvements in 31.8% of the classrooms using only heaters and 14.6% of the classrooms not equipped with HVAC. The survey shows that there is a wide gap in the heating equipment status of the classrooms according to the region and school district.

Adaptive control of rotationally non-linear asymmetric structures under seismic loads

  • Amini, Fereidoun;Rezazadeh, Hassan;Afshar, Majid Amin
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.721-730
    • /
    • 2018
  • This paper aims to inspect the effectiveness of the Simple Adaptive Control Method (SACM) to control the response of asymmetric buildings with rotationally non-linear behavior under seismic loads. SACM is a direct control method and was previously used to improve the performance of linear and non-linear structures. In most of these studies, the modeled structures were two-dimensional shear buildings. In reality, the building plans might be asymmetric, which cause the buildings to experience torsional motions under earthquake excitation. In this study, SACM is used to improve the performance of asymmetric buildings, and unlike conventional linear models, the non-linear inertial coupling terms are considered in the equations of motion. SACM performance is compared with the Linear Quadratic Regulator (LQR) algorithm. Moreover, the LQR algorithm is modified, so that it is appropriate for rotationally non-linear buildings. Active tuned mass dampers are used to improve the performance of the modeled buildings. The results show that SACM is successful in reducing the response of asymmetric buildings with rotationally non-linear behavior under earthquake excitation. Furthermore, the results of the SACM were very close to those of the LQR algorithm.

Comparison Analysis of Construction Costs according to LEED and non-LEED Certified Educational Buildings (교육시설물의 LEED 인증유무에 따른 공사비 비교연구)

  • Ha, Sun-Geun;Son, Kiyoung;Kim, Ji-Myong;Kim, Taihui
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.24 no.6
    • /
    • pp.3-10
    • /
    • 2017
  • The efforts for sustainable development in building construction is widely applied by global organizations, governments, etc. However, according to the researchers, if the green rating systems on the building, it is reported that construction costs and durations are increased compared to conventional buildings. In this respect, the objective of this study is to identify the construction costs between LEED and non-LEED buildings. The scope of this study is limited in 21 university buildings of Canada. The methodology is as follows: First, the data of LEED and non-LEED buildings are collected in every university building. Second, the average construction costs per square meter is collected and normality check is conducted. Third, to identify statistical significance, the difference of average construction costs is analyzed by using T-test. As a result, it is concluded that the construction costs of LEED buildings are increased by approximately 3.8% more than non-LEED buildings. In the future, the results of this study can be applied to analyzing the additional costs according to the LEED grade in educational buildings.

Seismic evaluation of self-centering energy dissipating braces using fragility curves

  • Kharrazi, Hossein;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.679-693
    • /
    • 2020
  • This paper investigates the seismic response of buildings equipped with Self-Centering Energy Dissipating (SCED) braces. Two-dimensional models of 3, 6, 12 and 16-story SCED buildings considering both material and geometric nonlinearities are investigated by carrying out pushover and nonlinear time-history analyses. The response indicators of the buildings are studied for weight-scaled ground motions to represent the Design Basis Earthquake (DBE) level and the Maximum Considered Earthquake (MCE) event. The fragility curves of the buildings for two Immediate Occupancy (IO) and Life Safety (LS) performance levels are developed using Incremental Dynamic Analysis (IDA). Results of the nonlinear response history analyses indicate that the maximum inter-story drift occurs at the taller buildings. The mean peak inter-story drift is less than 2% in both hazard levels. High floor acceleration peaks are observed in all the SCED frames regardless of the building height. The overall ductility and ductility demand increase when the number of stories reduces. The results also showed the residual displacement is negligible for all of case study buildings. The 3 and 6-story buildings exhibit desirable performance in IO and LS performance levels according to fragility curves results, while 12 and 16-story frames show poor performance especially in IO level. The results indicated the SCED braces performance is generally better in lower-rise buildings.

Parametric Study of Asymmetric Base-Isolation Coupling Control System for Vibration Control of Adjacent Twin Buildings (쌍둥이 인접구조물의 진동 제어를 위한 비대칭 지진격리 연결 제어시스템의 매개변수연구)

  • Kim, David;Park, Wonsuk;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.3
    • /
    • pp.45-51
    • /
    • 2022
  • This paper focuses on a recently proposed asymmetric base-isolation coupling control system (ABiCS) for the vibration control of adjacent twin buildings. The ABiCS consists of inter-story diagonal dampers, a connecting damper between the two buildings, and a seismic isolation device at the base floor of one building. To investigate the control characteristics of ABiCS, a parametric study was performed by numerically simulating the 20-story twin buildings. In the parametric study, the control capacities of the inter-story diagonal dampers, connecting damper, and seismic isolation device were considered as varying parameters. The parametric study results indicate that the connecting damper between the two buildings reduces the responses of both buildings only at optimal or near-optimal capacity. In addition, adjusting the stiffness of the base isolation is found to be the most effective method for improving seismic performance and achieving cost-effectiveness. Accordingly, we presented a scenario-based performance improvement approach in which reducing the stiffness of the base isolation device could be an effective technique to improve the seismic performance of both buildings. However, note that checking the maximum allowable displacement of the base isolation device is essential.

A Study on Design Trends of the Contemporary School Architecture -Focused on School Buildings since the Second Half of the 1980's- (동시대(同時代) 학교건축(學校建築)의 디자인 경향(傾向)에 관한 연구(硏究) -1980년대 후반이후 학교건물을 중심으로-)

  • Lee, Hwa-Ryong
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.14 no.1
    • /
    • pp.5-13
    • /
    • 2007
  • An architectural practice cannot help involving a social art as its own concept. Especially school buildings are subjected to the influence of not only the educational philosophy and the national curriculum, but also the sociocultural context with the change of the times. This study aims to explore the contemporary trends of school architecture and give new inspiration to the school design practice. After it establishes the 'contemporary' school architecture as school buildings built from the second half of the 1980's to the present time, this paper classifies them into 4 categories : popularist trend, traditional and regional tendency, revival of classicism and the pursuit of art for art's sake.

The Study on development of models of the Planning Toilet in School Buildings (학교화장실 계획의 최적화 모델개발 연구)

  • Lee, Sang Min;Kim, Sung Joong;Meang, Joon Ho
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.8 no.2
    • /
    • pp.40-50
    • /
    • 2009
  • The toilet in school building is one of most crucial elements for the recent changing face in school design, but the number of toilets and urinals in most school may not be sufficient to meet current needs, especially in the girl's toilet rooms. This study aims to suggest a guideline in designing the toilet in school buildings and propose the optimum area and development of models. The survey for this study is conducted through questionnaires collected and research from 9 schools in Seoul. The results of this study, it is suggested that the number of toilet facilities in school buildings be required by ratio of 0.5 toilets per a class and 1.1 urinal per a class for boy. In case of girls, it is suggested that ratio of 1.6 toilets per a class. Based on the result, it also propose various unit plans for each class block with space such as rest zone, green zone, powder zone etc.

  • PDF