• Title/Summary/Keyword: Scheduling validation

Search Result 25, Processing Time 0.021 seconds

A Mathematical Model for Airline Ground Crew Scheduling Problem (항공사 지상직 승무원 근무 당번표 작성문제)

  • Ko, Young Dae;Oh, Yonghui
    • Korean Management Science Review
    • /
    • v.29 no.3
    • /
    • pp.183-192
    • /
    • 2012
  • For the past several decades, personnel scheduling and rostering problem has been one of the most popular research topics in optimization area. Among the numerous applications, airline (aviation) industry has been given most attention due to the economic scale and impact. Most of the literatures about the staff scheduling problem in airline industry are dealing with the air crew, pilots and flight attendances, and the rest of the literatures are about the ground staff, by whom cleaning, maintenance, fueling of aircraft and handling luggage are done from landing to taking off. None of the literatures found by the authors are dealing with the airline ground crew. In this paper roster of airline ground crew, who is responsible for issuing boarding pass, checking baggage, etc, is introduced, formulated and solved using CPLEX. Some expressions of the mathematical formulations, which are not suitable input format of the CPLEX, were transformed. Numerical examples are presented for the validation of proposed scheduling system.

The Simulation System for Scheduling Validation of the Panel Block Shop (판넬 블록공정 모델에 대한 일정검증 시뮬레이션 시스템)

  • Lee, Phi-Lippe;Oh, Dae-Kyun;Lee, Kwang-Kook;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.641-649
    • /
    • 2009
  • There were many simulation models that made for validation of industrial environment and estimate of efficiency to be constructed. And there will be more simulation models made for same reason, too. Already, there have been a lot of simulation models in industry field and scholar labs. To reuse these simulation models, it is necessary to find common properties and make the high abstract simulation model. Based on this idea, this study shows to define the high abstract simulation model to be able to specialize in need and to make the software framework for connecting the specific simulation model to the abstract model. And it is held up as the example that applying the simulation framework to the Ship Panel Block shop simulation model.

An Automatic Block Allocation Methodology at Shipbuilding Midterm Scheduling (조선 중일정 블록 배량 계획 자동화 연구)

  • Hwang, InHyuck;Nam, SeungHoon;Shin, JongGye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.409-416
    • /
    • 2012
  • Most of the shipbuilding scheduling researches so far have been conducted with stress on the dock plan. That is due to the fact that the dock is the least extendable resource in shipyards and its overloading is difficult to resolve. However, once the dock scheduling is completed, it is also important to make a plan that make the best use of the rest of the resources in the shipyard, so that any additional cost is minimized. This study automates block allocation process by analyzing the existing manual process that designates production bays for the blocks during the midterm planning. Also, a planning scenario validation method is suggested, where block allocation scenarios based on diagrams are edited and simulated.

Short-Term Hydro Scheduling for Hydrothermal Coordination Using Genetic Algorithm (유전 알고리즘에 의한 수화력 협조를 위한 단기 수력 스케줄링)

  • Lee, Yong-Han;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.289-291
    • /
    • 1998
  • This paper presents short-term hydro scheduling method for hydrothermal coordination by genetic algorithm. Hydro scheduling problem has many constraints with fixed final reservoir volume. In this paper, the difficult water balance constraints caused by hydraulic coupling satisfied throughout dynamic decoding method. Adaptive penalizing method was also proposed to handle the infeasible solutions that violate various constraints. The effectiveness of proposed method in this paper was examined through the case studies. Further studies for the validation of the hydro scheduling scheme obtained by genetic algorithm will be very appreciated.

  • PDF

Development of an Analysis Program for Small Horizontal Wind Turbines Considering Side Furling and Optimal Torque Scheduling (사이드 펄링과 최적 토크스케줄을 고려한 소형 풍력터빈 해석 프로그램 개발)

  • Jang, Hyeon-Mu;Kim, Dong-Myeong;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.15-31
    • /
    • 2018
  • A program to design a small capacity wind turbine blade is proposed in this study. The program is based on a matlab GUI environment and designed to perform blade design based on the blade element momentum theory. The program is different from other simulation tools available in a point that it can analyze the side-furling power regulation mechanism and also has an algorithm to find out optimal torque schedule above the rated wind speed region. The side-furling power regulation is used for small-capacity horizontal axis wind turbines because they cannot use active pitch control due to high cost which is commonly used for large-capacity wind turbine. Also, the torque schedule above the rated wind speed region should be different from that of the large capacity wind turbines because active pitching is not used. The program developed in this study was validated with the results with FAST which is the only program that can analyze the performance of side-furled wind turbines. For the validation a commercial 10 kW wind turbine data which is available in the literature was used. From the validation, it was found that the performance prediction from the proposed simple program is close to those from FAST. It was also found that the optimal torque scheduling from the proposed program was found to increase the turbine power substantially. Further experimental validation will be performed as a future work.

A Study on the Heuristic-Based Yard Crane Scheduling Method Using Truck Arrival Information (트럭 도착 정보를 활용한 휴리스틱 기반 야드 크레인 스케줄링 방법)

  • Hwang, Sung-Bum;Jeong, Suk-Jae;Yoon, Sung-Wook
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.45-56
    • /
    • 2019
  • Literatures have considered mathematical model that change the job order of shipper for improving the operation time of yard crane. However, on the real site, it is impossible to change the job order decided according to the shipper's arrival order. Therefore, operation managers have been utilized the relatively simple strategy that job control is better but the process time of yard crane is longer due to the growth of yard crane's interference time and empty drive time. This study proposed a new yard-crane scheduling approach that decided the job order before the shipper's truck arrived the yard terminal. We utilize the Container Pre-Information Notice estimating the arrival time of truck. We developed the container terminal simulation model for validation of the effect of proposed scheduling approach. The results show that the proposed scheduling reduced the interference delay time and empty moving time of yard crane and shipper's truck delay time.

PLC Real Time OS Verification & Validation in Formal Methods (정형기법을 이용한 PLC RTOS 검증)

  • Choi, Chang-Ho;Song, Seung-Hwan;Yun, Dong-Hwa;Hwang, Sung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2489-2491
    • /
    • 2005
  • Currently, Programmable Logic Contorller(PLC) uses Real Time Operation System(RTOS) as basic OS. RTOS executes defined results as to defined time. General features of RTOS emphasize the priority in each task, high-speed process of external interrupt, task scheduling, synchronization in task, the limitation of memory capacity. For safety critical placement, PLC software needs Verification and Validation(V&V). For example, nuclear power plant. In this paper, PLC RTOS is verified by formal methods. Particularly, formal method V&V uses verification tool called 'STATEMATE', and shows the results.

  • PDF

Combined Age and Segregated Kinetic Model for Industrial-scale Penicillin Fed-batch Cultivation

  • Wang Zhifeng;Lauwerijssen Maarten J. C.;Yuan Jingqi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.142-148
    • /
    • 2005
  • This paper proposes a cell age model for Penicillium chrysogenum fed-batch cultivation to supply a qualitative insight into morphology-associated dynamics. The average ages of the segregated cell populations, such as growing cells, non-growing cells and intact productive cells, were estimated by this model. A combined model was obtained by incorporating the aver-age ages of the cell sub-populations into a known but modified segregated kinetic model from literature. For simulations, no additional effort was needed for parameter identification since the cell age model has no internal parameters. Validation of the combined model was per-formed by 20 charges of industrial-scale penicillin cultivation. Meanwhile, only two charge-dependent parameters were required in the combined model among approximately 20 parameters in total. The model is thus easily transformed into an adaptive model for a further application in on-line state variables prediction and optimal scheduling.

Analysis of Workforce Scheduling Using Adjusted Man-machine Chart and Simulation (보완 다중 활동 분석표와 시뮬레이션을 이용한 작업자 운영 전략 분석)

  • Hyowon Choi;Heejae Byeon;Suhan Yoon;Bosung Kim;Soondo Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.1
    • /
    • pp.20-27
    • /
    • 2024
  • Determining the number of operators who set up the machines in a human-machine system is crucial for maximizing the benefits of automated production machines. A man-machine chart is an effective tool for identifying bottlenecks, improving process efficiency, and determining the optimal number of machines per operator. However, traditional man-machine charts are lacking in accounting for idle times, such as interruptions caused by other material handling equipment. We present an adjusted man-machine chart that determines the number of machines per operator, incorporating idleness as a penalty term. The adjusted man-machine chart efficiently deploys and schedules operators for the hole machining process to enhance productivity, where operators have various idle times, such as break times and waiting times by forklifts or trailers. Further, we conduct a simulation validation of traditional and proposed charts under various operational environments of operators' fixed and flexible break times. The simulation results indicate that the adjusted man-machine chart is better suited for real-world work environments and significantly improves productivity.