• Title/Summary/Keyword: Scheduling Rule

Search Result 148, Processing Time 0.025 seconds

The dynamic production scheduling on flexible flowshop systems using simulation (유연흐름 생산시스템에서의 시뮬레이션을 이용한 동적일정계획 연구)

  • 우훈식
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.2
    • /
    • pp.1-12
    • /
    • 1996
  • Utilizing the simulation approaches, the dynamic production scheduling system FOLS(Flexible flowshop On-Line Simulation) is developed under the flexible flowshop environment. When an interruption such as machine failure/recovery is occurred at the shop floor, the FOLS system performs evaluations for job selection rule oriented alternatives, and generates a dynamic production schedule based on the collected current shop floor data. For the case study, the FOLS system is applied to the printed circuit card assembly(PCCA) line and simulation results are reported.

  • PDF

Fuzzy PI with Gain Scheduling Control for a Flexible Joint Robot

  • Hidenori, Kimura;Lee, Sang-Gu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.2-93
    • /
    • 2001
  • This paper presents the implementation of fuzzy PI gain scheduling controller (FPICGS) for controlling flexible joint robot arms with uncertainties from time-varying load. The term FPICGS is called based on a combination of fuzzy PI control scheme with a set of rule bases. Principle of design for a FPICGS is given along with the implementation of the designed computer aided control system. The experiment reveals an effectiveness of the proposed control scheme for flexible joint robot arms driven by a DC motorhooked with a spring which both parameters are completely unknown parameters ...

  • PDF

Bayesian Selection Rule for Human-Resource Selection in Business Process Management Systems (베이지안 규칙을 사용한 비즈니스 프로세스 관리 시스템에서의 인적 자원 배정)

  • Nisafani, Amna Shifia;Wibisono, Arif;Kim, Seung;Bae, Hye-Rim
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.1
    • /
    • pp.53-74
    • /
    • 2012
  • This study developed a method for selection of available human resources for incomingjob allocation that considers factors affecting resource performance in the business process management (BPM) environment. For many years, resource selection has been treated as a very important issue in scheduling due to its direct influence on the speed and quality of task accomplishment. Even though traditional resource selection can work well in many situations, it might not be the best choice when dealing with human resources. Humanresource performance is easily affected by several factors such as workload, queue, working hours, inter-arrival time, and others. The resource-selection rule developed in the present study considers factors that affect human resource performance. We used a Bayesian Network (BN) to incorporate those factors into a single model, which we have called the Bayesian Selection Rule (BSR). Our simulation results show that the BSR can reduce waiting time, completion time and cycle time.

Decision Tree based Scheduling for Static and Dynamic Flexible Job Shops with Multiple Process Plans (다중 공정계획을 가지는 정적/동적 유연 개별공정에 대한 의사결정 나무 기반 스케줄링)

  • Yu, Jae-Min;Doh, Hyoung-Ho;Kwon, Yong-Ju;Shin, Jeong-Hoon;Kim, Hyung-Won;Nam, Sung-Ho;Lee, Dong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.25-37
    • /
    • 2015
  • This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans. The problem is to determine the operation/machine pairs and the sequence of the jobs assigned to each machine. Two decision tree based scheduling mechanisms are developed for static and dynamic flexible job shops. In the static case, all jobs are given in advance and the decision tree is used to select a priority dispatching rule to process all the jobs. Also, in the dynamic case, the jobs arrive over time and the decision tree, updated regularly, is used to select a priority rule in real-time according to a rescheduling strategy. The two decision tree based mechanisms were applied to a flexible job shop case with reconfigurable manufacturing cells and a conventional job shop, and the results are reported for various system performance measures.

Dispatching Rule based Job-Shop Scheduling Algorithm with Delay Schedule for Minimizing Total Tardiness (지연 스케쥴을 허용하는 납기최소화 잡샵 스케쥴링 알고리즘)

  • Kim, Jae-Gon;Bang, June-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.33-40
    • /
    • 2019
  • This study focuses on a job-shop scheduling problem with the objective of minimizing total tardiness for the job orders that have different due dates and different process flows. We suggest the dispatching rule based scheduling algorithm to generate fast and efficient schedule. First, we show the delay schedule can be optimal for total tardiness measure in some cases. Based on this observation, we expand search space for selecting the job operation to explore the delay schedules. That means, not only all job operations waiting for process but also job operations not arrived at the machine yet are considered to be scheduled when a machine is available and it is need decision for the next operation to be processed. Assuming each job operation is assigned to the available machine, the expected total tardiness is estimated, and the job operation with the minimum expected total tardiness is selected to be processed in the machine. If this job is being processed in the other machine, then machine should wait until the job arrives at the machine. Simulation experiments are carried out to test the suggested algorithm and compare with the results of other well-known dispatching rules such as EDD, ATC and COVERT, etc. Results show that the proposed algorithm, MET, works better in terms of total tardiness of orders than existing rules without increasing the number of tardy jobs.

Heuristics for Scheduling Wafer Lots at the Deposition Workstation in a Semiconductor Wafer Fab (반도체 웨이퍼 팹의 흡착공정에서 웨이퍼 로트들의 스케쥴링 알고리듬)

  • Choi, Seong-Woo;Lim, Tae-Kyu;Kim, Yeong-Dae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.2
    • /
    • pp.125-137
    • /
    • 2010
  • This study focuses on the problem of scheduling wafer lots of several product families in the deposition workstation in a semiconductor wafer fabrication facility. There are multiple identical parallel machines in the deposition workstation, and two types of setups, record-dependent setup and family setup, may be required at the deposition machines. A record-dependent setup is needed to find optimal operational conditions for a wafer lot on a machine, and a family setup is needed between processings of different families. We suggest two-phase heuristic algorithms in which a priority-rule-based scheduling algorithm is used to generate an initial schedule in the first phase and the schedule is improved in the second phase. Results of computational tests on randomly generated test problems show that the suggested algorithms outperform a scheduling method used in a real manufacturing system in terms of the sum of weighted flowtimes of the wafer lots.

Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN (무선랜에서의 실시간 및 비실시간 트래픽 스케줄링)

  • Lee, Ju-Hee;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

A Spatial Adaptation Procedure for Determining Robust Dispatching Rule in Wafer Fabrication (공간적응절차를 통한 웨이퍼 가공 공정의 로버스트한 작업배정규칙 결정)

  • Baek, Dong-Hyun;Yoon, Wan-Chul;Park, Sang-Chan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.129-146
    • /
    • 1997
  • In traditional approaches to scheduling problems, a single dispatching rule was used by all machines in a system. However, since the situation of each machine generally differs from those of other machines, it is reasonable to apply a different dispatching rule to each machine responding to its given situation. In this regard, we introduce the concept of spatial adaptation and examine its effectiveness by simulation. In the spatial adaptation, each machine in a system selects an appropriate dispatching rule in order to improve productivity while it strives to be in harmony with other machines. This study proposes an adaptive procedure which produces a reliable dispatching rule for each machine beginning with the bottleneck machine. The dispatching rule is composed of several criteria of which priorities are adaptively weighted. The weights are learned for each machine through systematic simulations. The simulations are conducted according to a Taguchi experimental design in order to find appropriate sets of criteria weights in an efficient and robust way in the context of environmental variations. The proposed method was evaluated in an application to a semiconductor wafer fabrication system. The method achieved reliable performance compared to traditional dispatching rules, and the performance quickly approached the peak after learning for only a few bottleneck machines.

  • PDF

Production Scheduling in Semiconductor Wafer Fabrication Process (반도체 Wafer Fabrication 공정에서의 생산일정계획)

  • Lee, Koon-Hee;Hong, Yu-Shin;Kim, Soo-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.3
    • /
    • pp.357-369
    • /
    • 1995
  • Wafer fabrication process is the most important and critical process in semiconductor manufacturing. The process is very complicated and hard to establish an efficient schedule due to its complexity. Furthermore, several performance indices such as due dates, throughput, cycle time and workstation utilizations are to be considered simultaneously for an efficient schedule, and some of these indices have negative correlations in performances each other. We develop an efficient heuristic scheduling algorithm; Hybrid Input Control Policy and Hybrid Dispatching Rule. Through numerical experiments, it is shown that the proposed Hybrid Scheduling Algorithm gives better performance compared with existing algorithms.

  • PDF