• Title/Summary/Keyword: Scheduling Delay

Search Result 510, Processing Time 0.03 seconds

Energy-efficient Low-delay TDMA Scheduling Algorithm for Industrial Wireless Mesh Networks

  • Zuo, Yun;Ling, Zhihao;Liu, Luming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2509-2528
    • /
    • 2012
  • Time division multiple access (TDMA) is a widely used media access control (MAC) technique that can provide collision-free and reliable communications, save energy and bound the delay of packets. In TDMA, energy saving is usually achieved by switching the nodes' radio off when such nodes are not engaged. However, the frequent switching of the radio's state not only wastes energy, but also increases end-to-end delay. To achieve high energy efficiency and low delay, as well as to further minimize the number of time slots, a multi-objective TDMA scheduling problem for industrial wireless mesh networks is presented. A hybrid algorithm that combines genetic algorithm (GA) and simulated annealing (SA) algorithm is then proposed to solve the TDMA scheduling problem effectively. A number of critical techniques are also adopted to reduce energy consumption and to shorten end-to-end delay further. Simulation results with different kinds of networks demonstrate that the proposed algorithm outperforms traditional scheduling algorithms in terms of addressing the problems of energy consumption and end-to-end delay, thus satisfying the demands of industrial wireless mesh networks.

Stability and a scheduling method for network-based control systems (네트워크를 이용한 제어 시스템의 안정도 및 스케줄링에 관한 연구)

  • 김용호;권욱현;박홍성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1432-1435
    • /
    • 1996
  • This paper obtains maximum allowable delay bounds for stability of network-based control systems and presents a network scheduling method which makes the network-induced delay be less than the maximum allowable delay bound. The maximum allowable delay bounds are obtained using the Lyapunov theorem. Using the network scheduling method, the bandwidth of a network can be allocated to each node and the sampling period of each sensor and controller can be determined. The presented method can handle three kinds of data (periodic, real-time asynchronous, and non real-time asynchronous data) and guarantee real-time transmissions of real-time synchronous data and periodic data, and possible transmissions of non real-time asynchronous data. The proposed method is shown to be useful by examples in two types of network protocols such as the token control and the central control.

  • PDF

An Efficient Packet Scheduling Scheme to support Real-Time Traffic in OFDMA Systems (OFDMA 시스템에서 실시간 트래픽 전송을 위한 효율적 스케쥴링 기법)

  • Park, Jeong-Sik;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.13-23
    • /
    • 2007
  • In this paper, a packet scheduling scheme that supports real-time traffic having multi-level delay constraints in OFDMA systems is proposed. The proposed scheme pursues to satisfy the delay constraint first, and then manage the residual radio resource in order to enhance the overall throughput. A parameters named tolerable delay time (TDT) is newly defined to deal with the differentiated behaviors of packet scheduling according to the delay constraint level. Assuming that the packets violating the delay constraint are discarded, the proposed scheme is evaluated in terms of the packet loss probability, throughput, channel utilization. It is then compared with existing schemes for real-time traffic support such as the Exponential Scheduling (EXP) scheme, the Modified Largest Weighted Delay First (M-LWDF) scheme, and the Round robin scheme. The numerical results show that the proposed scheduling scheme performs much better than the aforementioned scheduling schemes in terms of the packet loss probability, while slightly better in terms of throughput and channel utilization.

Wireless Packet Scheduling Algorithm for Delay Proportional Internet Differentiated Services (무선 망에서의 지연 비례 인터넷 차별화 서비스 제공을 위한 스케줄링 알고리즘)

  • 유상조;이훈철
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.6
    • /
    • pp.225-236
    • /
    • 2003
  • In this paper, we propose a wireless scheduling algorithm to provide the Internet delay proportional differentiated services in wireless networks. For considering network environments that have burst and location-dependent channel errors, our proposed WDPS(Wireless Delay Proportional Service) scheduling algorithm adaptively serves packets in class queues based on the delivered delay performance for each class. The remarkable characteristics of WDPS scheduler are supporting a fair relative delay service, providing graceful throughput and delay compensation, and avoiding class queue blocking problem. Through simulations, we show that the algorithm achieves the desirable properties to provide delay proportional services in wireless networks.

Development of an Extended EDS Algorithm for CAN-based Real-Time System (CAN기반 실시간 시스템을 위한 확장된 EDS 알고리즘 개발)

  • Lee, Byong-Hoon;Kim, Dae-Won;Kim, Hong-Ryeol
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2369-2373
    • /
    • 2001
  • Usually the static scheduling algorithms such as DMS (Deadline Monotonic Scheduling) or RMS(Rate Monotonic Scheduling) are used for CAN scheduling due to its ease with implementation. However, due to their inherently low utilization of network media, some dynamic scheduling approaches have been studied to enhance the utilization. In case of dynamic scheduling algorithms, two considerations are needed. The one is a priority inversion due to rough deadline encoding into stricted arbitration fields of CAN. The other is an arbitration delay due to the non-preemptive feature of CAN. In this paper, an extended algorithm is proposed from an existing EDS(Earliest Deadline Scheduling) approach of CAN scheduling algorithm haying a solution to the priority inversion. In the proposed algorithm, the available bandwidth of network media can be checked dynamically by all nodes. Through the algorithm, arbitration delay causing the miss of their deadline can be avoided in advance. Also non real-time messages can be processed with their bandwidth allocation. The proposed algorithm can achieve full network utilization and enhance aperiodic responsiveness, still guaranteeing the transmission of periodic messages.

  • PDF

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

Energy-Efficient Scheduling with Individual Packet Delay Constraints and Non-Ideal Circuit Power

  • Yinghao, Jin;Jie, Xu;Ling, Qiu
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2014
  • Exploiting the energy-delay tradeoff for energy saving is critical for developing green wireless communication systems. In this paper, we investigate the delay-constrained energy-efficient packet transmission. We aim to minimize the energy consumption of multiple randomly arrived packets in an additive white Gaussian noise channel subject to individual packet delay constraints, by taking into account the practical on-off circuit power consumption at the transmitter. First, we consider the offline case, by assuming that the full packet arrival information is known a priori at the transmitter, and formulate the energy minimization problem as a non-convex optimization problem. By exploiting the specific problem structure, we propose an efficient scheduling algorithm to obtain the globally optimal solution. It is shown that the optimal solution consists of two types of scheduling intervals, namely "selected-off" and "always-on" intervals, which correspond to bits-per-joule energy efficiency maximization and "lazy scheduling" rate allocation, respectively. Next, we consider the practical online case where only causal packet arrival information is available. Inspired by the optimal offline solution, we propose a new online scheme. It is shown by simulations that the proposed online scheme has a comparable performance with the optimal offline one and outperforms the design without considering on-off circuit power as well as the other heuristically designed online schemes.

A Study on Efficient Scheduling Scheme for QoS in ATM Switch (ATM 스위치에서의 QOS 을 위한 효율적인 스케쥴링 기법에 관한 연구)

  • 이상태;김남희
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.75-78
    • /
    • 1998
  • In this paper, we propose a new cell discarding and scheduling scheme which reduce cell loss rate by measuring, in real time, the number of discarded cells in the queuing system with a different loss priority for each class of service such that each class of service meets its cell loss rate requirements and reduce average delay rate for the traffic that is sensitive in cell delay in output buffer of the ATM switch. Throughout the computer simulation, the existing scheduling scheme and proposed scheme are compared with respect to cell loss rate and average delay time.

  • PDF

QoS-based Scheduling Algorithm for ATM in the Broadband Access Networks (가입자망에서의 서비스 품질 기반ATM 스케줄링 알고리즘)

  • 정연서;오창석
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.1
    • /
    • pp.67-73
    • /
    • 2001
  • This paper proposes a new scheduling algorithm for broadband ATM access network. The existed scheduling algorithms (Train, Chao. Dynamic scheduling algorithm) have high cell loss rate and waste channel. These proposed mechanism utilize to control of multimedia services based on the quality of service level of the input traffic This paper suggests a functional architecture of scheduling and the scheduling algorithm to satisfy various QoS requirements. The performance measures of interest, namely steady-state cell loss probability and average delay, average delay, are discussed by simulation results.

  • PDF

Integrated Packet Scheduling for VoIP Service (VoIP 서비스를 위한 통합 패킷 스케줄링)

  • Lee, Eun-Joung;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2124-2126
    • /
    • 2008
  • In the wireless communication systems, the demand of multimedia services is also increased. Unlike typical data packets, realtime service such as VoIP packets have delay bound and low loss rate requirement. In this paper we propose a new scheduling algorithm that be able to allocate resources to the different kinds of services such as VoIP and data packet. The proposed algorithm considers both time delay and channel condition toe determine the priority. Simulation results show that the proposed algorithm works more efficiently than the conventional algorithms.