• Title/Summary/Keyword: Scheduling Algorithm

Search Result 1,761, Processing Time 0.036 seconds

Development of an Extended EDS Algorithm for CAN-based Real-Time System

  • Lee, Byong-Hoon;Kim, Dae-Won;Kim, Hong-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.60.3-60
    • /
    • 2001
  • Usually the static scheduling algorithms such as DMS(Deadline Monotonic Scheduling) or RMS(Rate Monotonic Scheduling) are used for CAN scheduling due to its ease with implementation. However, due to their inherently low utilization of network media, some dynamic scheduling approaches have been studied to enhance the utilization. In case of dynamic scheduling algorithms, two considerations are needed. The one is a priority inversion due to rough deadline encoding into stricted arbitration fields of CAN. The other is an arbitration delay due to the non-preemptive feature of CAN. In this paper, an extended algorithm is proposed from an existing EDS(Earliest Deadline Scheduling) approach of CAN scheduling algorithm having a solution to the priority inverstion ....

  • PDF

An On-line Algorithm to Search Minimum Total Error for Imprecise Real-time Tasks with 0/1 Constraint

  • Song Gi-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.12
    • /
    • pp.1589-1596
    • /
    • 2005
  • The imprecise real-time system provides flexibility in scheduling time-critical tasks. Most scheduling problems of satisfying both 0/1 constraint and timing constraints, while the total error is minimized, are NP complete when the optional tasks have arbitrary processing times. Liu suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on uniprocessors for minimizing the total error. Song et al suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on multiprocessors for minimizing the total error. But, these algorithms are all off-line algorithms. On the other hand, in the case of on line scheduling, Shih and Liu proposed the NORA algorithm which can find a schedule with the minimum total error for a task system consisting solely of on-line tasks that are ready upon arrival. But, for the task system with 0/1 constraint, it has not been known whether the NORA algorithm can be optimal or not in the sense that it guarantees all mandatory tasks are completed by their deadlines and the total error is minimized. So, this paper suggests an optimal algorithm to search minimum total error for the imprecise on-line real-time task system with 0/1 constraint. Furthermore, the proposed algorithm has the same complexity, O(N log N), as the NORA algorithm, where N is the number of tasks.

  • PDF

A New Scheduling Algorithm for Semiconductor Manufacturing Process (반도체 제조공정을 위한 새로운 생산일정 알고리즘)

  • 복진광;이승권;문성득;박선원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.811-821
    • /
    • 1998
  • A new scheduling algorithm for large scale semiconductor processes is addressed. The difficulties of scheduling for semiconductor fabrication processes are mainly due from repeating production of wafers that experience reentrant flows. Sequence branch algorithm (SBA) is proposed for large real scheduling problems when all processing times are deterministic. The SBA is based on the reachability graph of Petri net of which the several defects such as memory consumption and system deadlock are complemented. Though the SBA shows the solution deviating a little from the optimal solution of mixed integer programming, it is adjustable for large size scheduling problems. Especially, it shows a potential that is capable of handling commercial size problems that are intractable with mathematical programming.

  • PDF

Real-Time Task Scheduling Algorithm for Automotive Electronic System (자동차 전장용 실시간 태스크 스케줄링 알고리즘)

  • Kwon, Kyu-Ho;Lee, Jung-Wook;Kim, Ki-Seok;Kim, Jae-Young;Kim, Joo-Man
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • Due to the increasing amount of electronic control system in a vehicle, the automotive software is increasingly sophisticated and complicated. Therefore it may be faced a time critical problem caused by its complexity. In order to solve such problems, the automotive electronic system can use a real-time scheduling mechanism based on predictability. We first consider the standard specification of the AUTOSAR OS and uC/OS-II such as its scheduling theory with time determinism. In this paper, we propose the scheduling algorithm to be conformable to a conformance class of OSEK/VDX specification. Algorithm analysis shows that our scheduling algorithm outperforms an existing Trampoline OS by intuition.

Packet Scheduling for Cellular Relay Networks by Considering Relay Selection, Channel Quality, and Packet Utility

  • Zhou, Rui;Nguyen, Hoang Nam;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.464-472
    • /
    • 2009
  • In this paper, we propose a packet scheduling algorithm for cellular relay networks by considering relay selection, variation of channel quality, and packet delay. In the networks, mobile users are equipped with not only cellular but also user relaying radio interfaces, where base station exploits adaptive high speed downlink channel. Our proposed algorithm selects a user with good cellular channel condition as a relay station for other users with bad cellular channel condition but can get access to relay link with good quality. This can achieve flexible packet scheduling by adjusting transmission rates of cellular link. Packets are scheduled for transmission depending on scheduling indexes which are calculated based on user's achieved transmission rate, packet utility, and proportional fairness of their throughput. The performance results obtained by using computer simulation show that the proposed scheduling algorithm is able to achieve high network capacity, low packet loss, and good fairness in terms of received throughput of mobile users.

A Modified Proportional Scheduler and Evaluation Method (수정 비례 지분 스케쥴러 및 평가법 설계)

  • 김현철;박정석
    • Journal of Internet Computing and Services
    • /
    • v.3 no.2
    • /
    • pp.15-26
    • /
    • 2002
  • Since multimedia data such as video and audio data are displayed within a certain time constraint, their computation and manipulation should be handled under limited condition. Traditional real-time scheduling algorithms could net be directly applicable, because they are not suitable for multimedia scheduling applications which support many clients at the same time. Rate Regulating Proportional Share Scheduling Algorithm is a scheduling algorithm considered the time constraint of the multimedia data. This scheduling algorithm uses a rate regulator which prevents tasks from receiving more resource than its share in a given period. But this algorithm loses fairness, and does not show graceful degradation of performance under overloaded situation, This paper proposes a new modified algorithm. namely Modified Proportional Share Scheduling Algorithm considering the characteristics of multimedia data such as its continuity and time dependency, Proposed scheduling algorithm shows graceful degradation of performance in overloaded situation and the reduction in the number of context switching, Furthermore, a new evaluation method is proposed which can evaluate the flexibility of scheduling algorithm.

  • PDF

A Scheduler for Multimedia Data and Evaluation Method (멀티미디어 데이터를 위한 스케쥴러 및 평가법 설계)

  • 유명련;김현철
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.1-7
    • /
    • 2002
  • Since multimedia data such as video and audio data are displayed within a certain time constraint, their computation and manipulation should be handled under limited condition. Traditional real-time scheduling algorithms could not be directly applicable, because they are not suitable for multimedia scheduling applications which support many clients at the same time. Rate Regulating Proportional Share Scheduling Algorithm is a scheduling algorithm considered the time constraint of the multimedia data. This scheduling algorithm uses a rate regulator which prevents tasks from receiving more resource than its share in a given period. But this algorithm loses fairness, and does not show graceful degradation of performance under overloaded situation. This paper proposes a new modified algorithm, namely Modified Proportional Share Scheduling Algorithm considering the characteristics of multimedia data such as its continuity and time dependency. Proposed scheduling algorithm shows graceful degradation of performance in overloaded situation and the reduction in the number of context switching. Furthermore, a new evaluation method is proposed which can evaluate the flexibility of scheduling algorithm.

  • PDF

A Study on Cell Scheduling for ABR Traffic in ATM Multiplexer (ATM 멀티플렉서에서 ABR 트랙픽을 위한 셀 스케쥴링에 관한 연구)

  • 이명환;이병호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.95-98
    • /
    • 1998
  • In this paper, we propose a cell scheduling algorithm for ABR traffic in ATM multiplexer. Proposed Algorithm can support ABR service more efficiently than existing WRR and DWRR algorithm. We evaluate the performances of proposed algorithm through computer simulation. Also, we model the VBR and the ABR traffics as ON/OFF source, and the CBR traffic as a Poisson source. And the simulation shows that proposed algorithm better performance over other cell scheduling algorithm in tem of mean cell delay time.

  • PDF

A Heuristic Algorithm for Crew Scheduling Problems (발견적 승무계획 해법의 연구)

  • 김정식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.9 no.13
    • /
    • pp.79-86
    • /
    • 1986
  • This paper presents a heuristic algorithm for a crew scheduling problem with dead head flights. This paper modifies and improves saving method for finding the Multiple Salesman tours in the graph. The results show that the computing time from this algorithm is implemented very much than those from general crew scheduling algorithms by set covering models.

  • PDF

An Application of a Binary PSO Algorithm to the Generator Maintenance Scheduling Problem (이진 PSO 알고리즘의 발전기 보수계획문제 적용)

  • Park, Young-Soo;Kim, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1382-1389
    • /
    • 2007
  • This paper presents a new approach for solving the problem of maintenance scheduling of generating units using a binary particle swarm optimization (BPSO). In this paper, we find the optimal solution of the maintenance scheduling of generating units within a specific time horizon using a binary particle swarm optimization algorithm, which is the discrete version of a conventional particle swarm optimization. It is shown that the BPSO method proposed in this paper is effective in obtaining feasible solutions in the maintenance scheduling of generating unit. IEEE reliability test systems(1996) including 32-generators are selected as a sample system for the application of the proposed algorithm. From the result, we can conclude that the BPSO can find the optimal solution of the maintenance scheduling of the generating unit with the desirable degree of accuracy and computation time, compared to other heuristic search algorithm such as genetic algorithms. It is also envisaged that BPSO can be easily implemented for similar optimizations and scheduling problems in power system problems to obtain better solutions and improve convergence performance.