• Title/Summary/Keyword: Schedulability

Search Result 85, Processing Time 0.024 seconds

Real-time Schedulability Analysis for Multi-core Virtual Machine (멀티코어 가상머신 환경의 실시간 스케줄 가능성 분석)

  • Yoo, Seehwan;Yoo, Hyuck
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1753-1756
    • /
    • 2010
  • 최근 들어 가상화 기술은 서버의 통합에 뿐만 아니라, 임베디드 시스템에서도 널리 사용되고 있다. 하지만, 가상화 시스템에서는 물리 프로세서가 게스트 운영체제에게 직접 전달되지 않으며, 게스트 운영체제는 가상 프로세서를 통해서 실행할 수 밖에 없다. 따라서, 기존의 처리량 기준의 공평성 스케줄러가 가상머신 모니터에서 동작하는 경우, 실시간 스케줄링이 불가능하다. 본 연구에서는 멀티코어 기반의 가상화 시스템에서 실시간 태스크의 실행을 보장하는 기법을 소개한다. 특히, 본 논문에서는 계층형 스케줄링의 특성과 최대 병렬성 조건을 통하여 멀티코어 가상머신의 스케줄 가능성 분석 기법을 제시한다.

Timing Verification of AUTOSAR-compliant Diesel Engine Management System Using Measurement-based Worst-case Execution Time Analysis (측정기반 최악실행시간 분석 기법을 이용한 AUTOSAR 호환 승용디젤엔진제어기의 실시간 성능 검증에 관한 연구)

  • Park, Inseok;Kang, Eunhwan;Chung, Jaesung;Sohn, Jeongwon;Sunwoo, Myoungho;Lee, Kangseok;Lee, Wootaik;Youn, Jeamyoung;Won, Donghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.91-101
    • /
    • 2014
  • In this study, we presented a timing verification method for a passenger car diesel engine management system (EMS) using measurement-based worst-case execution time (WCET) analysis. In order to cope with AUTOSAR-compliant software architecture, a development process model is proposed. In the process model, a runnable is regarded as a test unit and its temporal behavior (i.e. maximum observed execution time, MOET) is obtained along with on-target functionality evaluation results during online unit test. Furthermore, a cost-effective framework for online unit test is proposed. Because the runtime environment layer and the standard calibration environment are utilized to implement test interface, additional resource consumption of the target processor is minimized. Using the proposed development process model and unit test framework, the MOETs of 86 runnables for diesel EMS are obtained with 213 unit test cases. Using the obtained MOETs of runnables, the WCETs of tasks are estimated and the schedulability is evaluated. From the schedulability analysis results, the problems of the initially designed schedule table is recognized and it is fixed by redesigning of the runnable mapping and task offset. Through the various test scenarios, the proposed method is validated.

Mixed Task Scheduling Using Synthetic Utilization (합성 이용율을 이용한 혼합 태스크 스케줄링)

  • Moon, Seok-Hwan;Kim, In-Guk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2277-2282
    • /
    • 2010
  • O(1) time synthetic utilization is not considered periodic tasks, except scheduling methods for aperiodic tasks where one of the aperiodic tasks is a scheduling method. But really aperiodic tasks scheduling method is composed of mixed task types. Aperiodic task scheduling method guarantee an analysis of the schedualibility of aperiodic task. The set of mixed tasks periodic and aperiodic tasks scheduling method uses synthetic utilization that is presented in this paper. The new method shows that schedulability increases 20% aperiodic server method.

A Real-Time Scheduling Algorithm for Tasks with Shared Resources on Multiprocessor Systems (다중프로세서 시스템상의 공유 자원을 포함하는 태스크를 위한 실시간 스케줄링 알고리즘)

  • Lee, Sang-Tae;Kim, Young-Seok
    • The KIPS Transactions:PartA
    • /
    • v.17A no.6
    • /
    • pp.259-264
    • /
    • 2010
  • In case of scheduling tasks with shared resources in multiprocessor systems, Global Earliest Deadline First (GEDF) algorithm, equally applied Earliest Deadline First (EDF) which runs scheduling with deadline criterion, makes schedulability decline because GEDF typically does not have a specific process in order to handle tasks with shared resources. In this paper, we propose Earliest Deadline First with Partitioning (EDFP) for tasks with shared resources which partitions a task into two kinds of subtasks that include critical sections to access to shared resources, gives their own deadline respectively and manages them. As a result of simulations, EDFP shows better performance than GEDF for tasks with shared resources since system load goes up and the number of processor increases.

Performance Enhancement of a DBS receiver using Hybrid Approaches in a Real-Time OS Environment (실시간처리 운영체계 환경에서 Hybrid 방식을 이용한 디지털 DBS 위성수신기 성능개선)

  • Seong, Yeong-Rak;Jung, Kyeong-Hoon;Kang, Dong-Wook;Kim, Ki-Doo;Kim, Sung-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • A Digital Broadcasting Satellite (DBS) receiver converts digital A/V streams received from a satellite to analog NTSC A,/V signals in real-time. Multi-tasking is an efficient way to improve the utilization of the processor core in real-time applications. In this paper, we propose a hybrid approach with a balanced trade-off between hardware kernel and multi-tasking programming to increase a system throughput. First, the schedulability of the critical hard real-time tass in the DBS receiver is verified by using a simple feasibility test. Then. several soft real-time tasks are thoughtfully programmed to satisfy functional requirements of the system.

  • PDF

Mixed Tasks Scheduling Using Improved Synthetic Utilization on Multiprocessor Systems (다중프로세서 시스템에서 개선된 합성 이용율을 이용한 혼합 태스크 스케줄링)

  • Moon, Seok-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.351-356
    • /
    • 2015
  • Synthetic utilization on multiprocessor system is not considered periodic tasks, except scheduling methods for aperiodic tasks where one of the real-time aperiodic tasks is a scheduling method. But really aperiodic tasks scheduling method is composed of mixed task types. Aperiodic task scheduling method guarantee an analysis of the schedualibility of aperiodic task. The set of mixed tasks periodic and aperiodic tasks scheduling method uses improved synthetic utilization that is presented in this paper. The new method shows that schedulability increases aperiodic server method.

Preserving Mobile QoS during Handover via Predictive Scheduling in IMT Advanced System (IMT Advanced 시스템에서 예측 스케줄링을 통한 핸드오버시 모바일 QoS 보존 방법)

  • Poudyal, Neeraj;Lee, Byung-Seub
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.865-873
    • /
    • 2010
  • In this paper, a novel schedulability criteria is developed to provide handover calls with Quality of Service (QoS) guarantees in terms of both minimum available bandwidth, maximum tolerated packet delay, and other additive QoS constraints as required by the real-time mobile traffic. This requires prediction of the handover time using mobility trends on the mobile station, which is used as input to this work. After the handover time and the QoS are negotiated, the destination base station makes attempts to give priority to handover calls over new calls, and pre-reserves resources that will have more chance of being available during the actual handover.

Non-Preemptive Fixed Priority Scheduling for Design of Real-Time Embedded Systems (실시간 내장형 시스템의 설계를 위할 비선점형 고정우선순위 스케줄링)

  • Park, Moon-Ju
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 2009
  • Embedded systems widely used in ubiquitous environments usually employ an event-driven programming model instead of thread-based programming model in order to create a more robust system that uses less memory. However, as the software for embedded systems becomes more complex, it becomes hard to program as a single event handler using the event-driven programming model. This paper discusses the implementation of non-preemptive real-time scheduling theory for the design of embedded systems. To this end, we present an efficient schedulability test method for a given non-preemptive task set using a sufficient condition. This paper also shows that the notion of sub-tasks in embedded systems can overcome the problem of low utilization that is a main drawback of non-preemptive scheduling.

Guaranteeing delay bounds based on the Bandwidth Allocation Scheme (패킷 지연 한계 보장을 위한 공평 큐잉 기반 대역할당 알고리즘)

  • 정대인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8A
    • /
    • pp.1134-1143
    • /
    • 2000
  • We propose a scheduling algorithm, Bandwidth Allocation Scheme (BAS), that guarantees bounded delay in a switching node. It is based on the notion of the GPS (Generalized Processor Sharing) mechanism, which has clarified the concept of fair queueing with a fluid-flow hypothesis of traffic modeling. The main objective of this paper is to determine the session-level weights that define the GPS sewer. The way of introducing and derivation of the so-called system equation' implies the approach we take. With multiple classes of traffic, we define a set of service curves:one for each class. Constrained to the required profiles of individual service curves for delay satisfaction, the sets of weights are determined as a function of both the delay requirements and the traffic parameters. The schedulability test conditions, which are necessary to implement the call admission control, are also derived to ensure the proposed bandwidth allocation scheme' be able to support delay guarantees for all accepted classes of traffic. It is noticeable that the values of weights are tunable rather than fixed in accordance with the varying system status. This feature of adaptability is beneficial towards the enhanced efficiency of bandwidth sharing.

  • PDF

Real-Time Aperiodic Tasks Scheduling Using Improved Synthetic Utilization on Multiprocessor Systems (다중프로세서 시스템상의 개선된 합성 이용율을 이용한 실시간 비주기 태스크 스케줄링)

  • Moon, Seok-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.97-102
    • /
    • 2014
  • Abdelzaher et al. proposed an algorithm to determine the schedulability of aperiodic tasks on multiprocessor systems, and proved that the aperiodic tasks are schedulable if the upperbound of synthetic utilization is less than or equal to 0.59. But this algorithm has a drawback in that if some tasks, even though they are completed and have no more execution times, are included in the current invocation set, their execution times and deadlines are added to the synthetic utilization. This may lead to a problem in which actually schedulable tasks are decided not to be schedulable. In this paper, we recognize the above mentioned problem and propose an improved synthetic utilization method that can be used to schedule aperiodic tasks more efficiently on multiprocessor systems.